基板平面度要求

   2022-06-04 17:00:20 网络380
核心提示:基板平面度要求为<0.02mm包装包装牢靠、无严重破损、变形等现象。铜、铝、钨铜合金和钼铜合金由于具有很高的热导率常常被用作电子封装金属基板。这类基板由于与集成电路芯片直接焊接,因此质量要求非常高,不仅要求具有很高的热导率,高的表面光洁度,

基板平面度要求

基板平面度要求为<0.02mm包装包装牢靠、无严重破损、变形等现象。铜、铝、钨铜合金和钼铜合金由于具有很高的热导率常常被用作电子封装金属基板。这类基板由于与集成电路芯片直接焊接,因此质量要求非常高,不仅要求具有很高的热导率,高的表面光洁度,同时要求必须具备非常好的平面度。良好的平面度有利用于芯片和金属基板很好的贴合在一起,使芯片和基板的贴合面积增大,焊接后能形成良好的贴合面,防止贴合面上产生焊接气孔。芯片与金属基板形成良好的贴合面能保证芯片的热量快速通过贴合面向外部散发,保证芯片稳定工作。

常见芯片封装有那几种?各有什么特点?

这是一篇关于半导体行业发展的长篇介绍,文中有些表达上对行业人士来说可能会存在些许不严谨,欢迎交流。

首先要解释两个概念: 芯片设计与芯片代工

它们是有区别的,在这里举个例子:高通、三星、华为都可以设计芯片。这其中,三星是可以自己生产芯片的,而高通和华为,是需要找代工的。

三星和台积电,是两家最广为人知的芯片代工厂。

比如美国高通的芯片,是自己设计的。但它并不生产芯片,比如高通的高端芯片,是交给三星来代工的,华为设计的高端芯片则是交给台积电来代工。

为什么大陆目前生产不了高端芯片?

论芯片设计,我们已经不弱了,华为的麒麟芯片就是自己研发的,在高端芯片上已经算是很强了。

但麒麟芯片的代工却没有找大陆厂商。

因为即使是大陆目前第一的中芯国际,现在也没有能力生产麒麟970芯片。

华为麒麟970芯片,工艺制程是10nm。

关于工艺制程后面会有详细介绍,就是数字越小,说明制程越先进。我们手机里的芯片,制程工艺好不好,决定了芯片的性能。

7nm的芯片,必然比10nm的强,10nm的又强于14nm工艺的。

在2017年,三星和台积电,都掌握了最先进的10nm工艺。所以现在10nm 的生产工艺,是垄断在英特尔、三星和台积电手里的。

而大陆最先进的中芯国际,只能生产最高规格28nm工艺的。

为什么大陆的生产工艺落后?

主要是光刻机: 因为芯片的生产,关键是要光刻机。 说到光刻机这个行业,就不得不提荷兰 的ASML Holding N.V

简单说一下光刻机:

其实早期的光刻机的原理像幻灯机一样简单,就是把光通过带电路图的掩膜 (Mask,后来也叫光罩) 投影到涂有光敏胶的晶圆上(关于晶圆,下面芯片设计中会有详细介绍)。早期 60 年代的光刻,掩膜版是 1:1 尺寸紧贴在晶圆片上,而那时晶圆也只有 1 英寸大小。

因此,光刻那时并不是高 科技 ,半导体公司通常自己设计工装和工具,比如英特尔开始是买 16 毫米摄像机镜头拆了用。只有 GCA, K&S 和 Kasper 等很少几家公司有做过一点点相关设备。

60 年代末,日本的尼康和佳能开始进入这个领域,毕竟当时的光刻不比照相机复杂。

1978 年,GCA 推出真正现代意义的自动化步进式光刻机 (Stepper),分辨率比投影式高 5 倍达到 1 微米。

但此时的光刻机行业依旧是个小市场,一年卖几十台的就算大厂了。因为半导体厂商就那么多,一台机器又能用好多年。这导致你的机器落后一点,就没人愿意买了。技术领先是夺取市场的关键,赢家通吃。

80 年代一开始,GCA 的 Stepper 还稍微领先,但很快尼康发售了自己首台商用 Stepper NSR-1010G,拥有更先进的光学系统极大提高了产能。两家开始一起挤压了其它厂商的份额。

到了 1984 年,在光刻行业,尼康和 GCA 平起平坐,各享三成市占率。Ultratech 占约一成,Eaton、P&E、佳能、日立等剩下几家瓜分剩下的三成。

但转折也发生在这一年,这一年飞利浦在实验室里研发出 stepper 的原型,但是不够成熟。因为光刻市场太小,飞利浦也不能确认它是否有商业价值,去美国和 P&E、GCA、Cobilt、IBM 等谈了一圈也没人愿意合作。

很巧合有家荷兰小公司叫 ASM International 的老板 Arthur Del Prado 听说了有这么回事,主动要求合作。但这家代理出身的公司只有半导体一些经验,对光刻其实不太懂,等于算半个天使投资加半个分销商。飞利浦犹豫了一年时间,最后勉强同意了设立 50:50 的合资公司。1984 年 4 月 1 日 ASML 成立的时候,只有 31 名员工,在飞利浦大厦外面的木板简易房里工作。

ASML 最早成立时的简易平房,后面的玻璃大厦是飞利浦。Credit: ASML

ASML 在 1985 年和蔡司 (Zeiss) 合作改进光学系统,终于在 1986 年推出非常棒的第二代产品 PAS-2500,并第一次卖到美国给当时的创业公司 Cypress,今天的 Nor Flash 巨头。

但接下来的一年,1986 年半导体市场大滑坡,导致美国一帮光刻机厂商都碰到严重的财务问题。ASML 规模还小,所以损失不大,还可以按既有计划开发新产品。但,GCA 和 P&E 这些老牌厂商就顶不住了,它们的新产品开发都停滞了下来。

1988 年 GCA 资金严重匮乏被 General Signal 收购,又过了几年 GCA 找不到买主而破产。1990 年,P&E 光刻部也支撑不下去被卖给 SVG。

1980 年还占据大半壁江山的美国三雄,到 80 年代末地位完全被日本双雄取代。这时 ASML 大约有 10% 的市场占有率。

忽略掉美国被边缘化的 SVG 等公司,90 年代后,一直是 ASML 和尼康的竞争,而佳能在旁边看热闹。

在后来 ASML 推出浸入式 193nm 产品,紧接着尼康也宣布自己的 157nm 产品以及 EPL 产品样机完成。然而,浸入式属于小改进大效果,产品成熟度非常高,而尼康似乎是在做实验,因此几乎没有人去订尼康的新品。

这导致后面尼康的大溃败。尼康在 2000 年还是老大,但到了 2009 年 ASML 已经市占率近 7 成遥遥领先。尼康新产品的不成熟,也间接关联了大量使用其设备的日本半导体厂商的集体衰败。

至于佳能,当它们看到尼康和 ASML 在高端光刻打得如此厉害就直接撤了。直接开发低端光刻市场,直到现在它们还在卖 350nm 和 248nm 的产品,给液晶面板以及模拟器件厂商供货。

再回来,英特尔、三星和台积电之所以能生产 10nm 工艺的芯片,首先是它们能从 ASML 进口到高端的光刻机,用于生产 10nm 芯片。

而大陆没有高端的光刻机,用中低端的光刻机又缺乏技术,所以暂时只能生产工艺相对落后的芯片。

下面我们谈一谈芯片的设计,在谈论设计之前,我们需要知道 CPU、GPU、微架构和指令集 等概念。

CPU的含义,亦即中央处理器,是负责计算机主要运算任务的组件。功能就像人的大脑。可能大家听过CPU有 x86、ARM 这样的分类,前者主要用于PC而后者主要用于手机平板等设备。

CPU执行在计算任务时都需要遵从一定的规范,程序在被执行前都需要先翻译为CPU可以理解的语言。这种语言被称为 指令集 (ISA,Instruction Set Architecture)。程序被按照某种指令集的规范翻译为CPU可识别的底层代码的过程叫做编译(compile)。像x86、ARM v8、MIPS等都是指令集的代号。同时指令集可以被扩展。厂商开发兼容某种指令集的CPU需要指令集专利持有者授权,典型例子如Intel授权AMD,使后者可以开发兼容x86指令集的CPU。

CPU的基本组成单元即为核心(core)核心的实现方式被称为 微架构 (microarchitecture)和指令集类似,像Haswell、Cortex-A15等都是微架构的代号。微架构的设计影响核心(core)可以达到的最高频率、核心在一定频率下能执行的运算量、一定工艺水平下核心的能耗水平等等。

但值得注意的是: 微架构与指令集 是两个不同的概念:指令集是CPU选择的语言,而微架构是具体的实现。

以兼容ARM指令集的芯片为例:ARM公司将自己研发的指令集叫做ARM指令集,同时它还研发具体的微架构,例如Cortex系列并对外授权。

但是,一款CPU使用了ARM指令集并不等于它就使用了ARM研发的微架构。像高通、苹果等厂商都自行开发了兼容ARM指令集的微架构,同时还有许多厂商使用ARM开发的微架构来制造CPU,比如华为的麒麟芯片。通常,业界认为 只有具备独立的微架构研发能力的企业才算具备了CPU研发能力 ,而是否使用自行研发的指令集无关紧要。微架构的研发也是IT产业技术含量最高的领域之一。

以麒麟980为例,最主要的部分就是 CPU 和 GPU 。其中 Cortex-A76 和 Mali-G76 都是华为找ARM买的微架构授权,华为可以自研微架构吗?肯定是可以的,但要想达到苹果那样应用在手机系统上还有很长一段路要走,最起码现在看来是这样,除了自身研发会遇到各种问题外,因为芯片的开发和软件开发一样,需要EDA工具,使用ARM的微构架,它们会提供很多工具,这些东西也挺核心的,所以一旦另起炉灶就需要考虑各个方面的问题。

弄清楚了这些,就可以开始设计芯片了,但这一步也是非常复杂繁琐的。

芯片制造的过程就像盖房子一样,先有 晶圆 作为地基,然后再层层往上叠,经过一系列制造流程后,就可产出必要的 IC 芯片了。

那什么是晶圆呢?

晶圆(wafer), 是制造各种制式芯片的基础。我们可以将芯片制造看作盖房子,而晶圆就是一个平稳的地基。在固体材料中,有一种特殊的晶体结构──单晶(Monocrystalline)。它的特性就是原子一个接着一个紧密的排列,可以形成一个平整的原子表层。因此,我们采用单晶做成晶圆。但是,该如何产生这样的材料呢,主要有二个步骤,分别为 纯化以及拉晶 ,之后便能完成这样的材料。

纯化分成两个阶段,第一步是冶金级纯化,此一过程主要是加入碳,以氧化还原的方式,将氧化硅转换成 98% 以上纯度的硅。但是,98% 对于芯片制造来说依旧不够,仍需要进一步提升。因此,将再进一步采用 西门子制程(Siemens process) 作纯化,将获得半导体制程所需的高纯度多晶硅。

接着,就是 拉晶

首先,将前面所获得的高纯度多晶硅融化,形成液态的硅。然后,以单晶的 硅种(seed) 和液体表面接触,一边旋转一边缓慢的向上拉起。至于为何需要单晶的硅种,是因为硅原子排列就和人排队一样,会需要排头让后来的人该如何正确的排列,硅种便是重要的排头,让后来的原子知道该如何排队。最后,待离开液面的硅原子凝固后,排列整齐的单晶硅柱便完成了。

但一整条的硅柱并无法做成芯片制造的基板,为了产生一片一片的硅晶圆,接着需要以钻石刀将硅晶柱横向切成圆片,圆片再经由抛光便可形成芯片制造所需的硅晶圆。

至于8寸、12寸晶圆又代表什么东西呢?很明显就是指表面经过处理并切成薄圆片后的直径。尺寸愈大,拉晶对速度与温度的要求就更高,制作难度就越高。

经过这么多步骤,芯片基板的制造总算完成了,下一步便是芯片制造了。该如何制作芯片呢?

IC芯片,全名集成电路(Integrated Circuit),由它的命名可知它是将设计好的电路,以堆叠的方式组合起来。

从上图我们可以看出,底部蓝色的部分就是晶圆,而红色以及土黄色的部分,则是于 IC 制作时要设计的地方,就像盖房子要设计怎样的样式。

然后我们看 红色的部分 ,在 IC 电路中,它是整颗 IC 中最重要的部分,将由多种逻辑闸组合在一起,完成功能齐全的 IC 芯片,因此也可以看作是 根基上的根基

黄色的部分 ,不会有太复杂的构造,它的主要作用是将红色部分的 逻辑闸相连在一起 。之所以需要这么多层,是因为有太多线路要连结在一起,在单层无法容纳所有的线路下,就要多叠几层来达成这个目标了。在这之中,不同层的线路会上下相连以满足接线的需求。

然后开始制作这些部分:

制作 IC 时,可以简单分成4 种步骤。虽然实际制造时,制造的步骤会有差异,使用的材料也有所不同,但是大体上皆采用类似的原理。

完成这些步骤之后,最后便在一整片晶圆上完成很多 IC 芯片,接下来只要将完成的方形 IC 芯片剪下,便可送到封装厂做封装。

封装:

经过漫长的流程,终于获得一颗 IC 芯片了。然而一颗芯片相当小且薄,如果不在外施加保护,会被轻易的刮伤损坏。此外,因为芯片的尺寸微小,如果不用一个较大尺寸的外壳,不容易安置在电路板上,所以才需要最后的封装。

封装的方式有很多种,常见的有双排直立式封装(Dual Inline Package;DIP),球格阵列(Ball Grid Array,BGA)封装,SoC(System On Chip)封装以及 SiP(System In Packet)封装。

完成封装后,然后还需要进入测试阶段 ,在这个阶段是为了确认封装完的 IC 是否能正常的运作,检测没问题后便可出货给组装厂,做成我们所见的电子产品。

至此,完成整个制作流程。

封装基板与pcb区别

我们经常听说某某芯片采用什么什么的封装方式,在我们的电脑中,存在着各种各样不同处理芯片,那么,它们又是是采用何种封装形式呢?并且这些封装形式又有什么样的技术特点以及优越性呢?那么就请看看下面的这篇文章,将为你介绍个中芯片封装形式的特点和优点。

一、DIP双列直插式封装

DIP(DualIn-line Package)是指采用双列直插形式封装的集成电路芯片,绝大多数中小规模集成电路(IC)均采用这种封装形式,其引脚数一般不超过100个。采用DIP封装的CPU芯片有两排引脚,需要插入到具有DIP结构的芯片插座上。当然,也可以直接插在有相同焊孔数和几何排列的电路板上进行焊接。DIP封装的芯片在从芯片插座上插拔时应特别小心,以免损坏引脚。

DIP封装具有以下特点:

1.适合在PCB(印刷电路板)上穿孔焊接,操作方便。

2.芯片面积与封装面积之间的比值较大,故体积也较大。

Intel系列CPU中8088就采用这种封装形式,缓存(Cache)和早期的内存芯片也是这种封装形式。

二、QFP塑料方型扁平式封装和PFP塑料扁平组件式封装

QFP(Plastic Quad Flat Package)封装的芯片引脚之间距离很小,管脚很细,一般大规模或超大型集成电路都采用这种封装形式,其引脚数一般在100个以上。用这种形式封装的芯片必须采用SMD(表面安装设备技术)将芯片与主板焊接起来。采用SMD安装的芯片不必在主板上打孔,一般在主板表面上有设计好的相应管脚的焊点。将芯片各脚对准相应的焊点,即可实现与主板的焊接。用这种方法焊上去的芯片,如果不用专用工具是很难拆卸下来的。

PFP(Plastic Flat Package)方式封装的芯片与QFP方式基本相同。唯一的区别是QFP一般为正方形,而PFP既可以是正方形,也可以是长方形。

QFP/PFP封装具有以下特点:

1.适用于SMD表面安装技术在PCB电路板上安装布线。

2.适合高频使用。

3.操作方便,可靠性高。

4.芯片面积与封装面积之间的比值较小。

Intel系列CPU中80286、80386和某些486主板采用这种封装形式。

三、PGA插针网格阵列封装

PGA(Pin Grid Array Package)芯片封装形式在芯片的内外有多个方阵形的插针,每个方阵形插针沿芯片的四周间隔一定距离排列。根据引脚数目的多少,可以围成2-5圈。安装时,将芯片插入专门的PGA插座。为使CPU能够更方便地安装和拆卸,从486芯片开始,出现一种名为ZIF的CPU插座,专门用来满足PGA封装的CPU在安装和拆卸上的要求。

ZIF(Zero Insertion Force Socket)是指零插拔力的插座。把这种插座上的扳手轻轻抬起,CPU就可很容易、轻松地插入插座中。然后将扳手压回原处,利用插座本身的特殊结构生成的挤压力,将CPU的引脚与插座牢牢地接触,绝对不存在接触不良的问题。而拆卸CPU芯片只需将插座的扳手轻轻抬起,则压力解除,CPU芯片即可轻松取出。

PGA封装具有以下特点:

1.插拔操作更方便,可靠性高。

2.可适应更高的频率。

Intel系列CPU中,80486和Pentium、Pentium Pro均采用这种封装形式。

四、BGA球栅阵列封装

随着集成电路技术的发展,对集成电路的封装要求更加严格。这是因为封装技术关系到产品的功能性,当IC的频率超过100MHz时,传统封装方式可能会产生所谓的“CrossTalk”现象,而且当IC的管脚数大于208 Pin时,传统的封装方式有其困难度。因此,除使用QFP封装方式外,现今大多数的高脚数芯片(如图形芯片与芯片组等)皆转而使用BGA(Ball Grid Array Package)封装技术。BGA一出现便成为CPU、主板上南/北桥芯片等高密度、高性能、多引脚封装的最佳选择。

BGA封装技术又可详分为五大类:

1.PBGA(Plasric BGA)基板:一般为2-4层有机材料构成的多层板。Intel系列CPU中,Pentium II、III、IV处理器均采用这种封装形式。

2.CBGA(CeramicBGA)基板:即陶瓷基板,芯片与基板间的电气连接通常采用倒装芯片(FlipChip,简称FC)的安装方式。Intel系列CPU中,Pentium I、II、Pentium Pro处理器均采用过这种封装形式。

3.FCBGA(FilpChipBGA)基板:硬质多层基板。

4.TBGA(TapeBGA)基板:基板为带状软质的1-2层PCB电路板。

5.CDPBGA(Carity Down PBGA)基板:指封装中央有方型低陷的芯片区(又称空腔区)。

BGA封装具有以下特点:

1.I/O引脚数虽然增多,但引脚之间的距离远大于QFP封装方式,提高了成品率。

2.虽然BGA的功耗增加,但由于采用的是可控塌陷芯片法焊接,从而可以改善电热性能。

3.信号传输延迟小,适应频率大大提高。

4.组装可用共面焊接,可靠性大大提高。

BGA封装方式经过十多年的发展已经进入实用化阶段。1987年,日本西铁城(Citizen)公司开始着手研制塑封球栅面阵列封装的芯片(即BGA)。而后,摩托罗拉、康柏等公司也随即加入到开发BGA的行列。1993年,摩托罗拉率先将BGA应用于移动电话。同年,康柏公司也在工作站、PC电脑上加以应用。直到五六年前,Intel公司在电脑CPU中(即奔腾II、奔腾III、奔腾IV等),以及芯片组(如i850)中开始使用BGA,这对BGA应用领域扩展发挥了推波助澜的作用。目前,BGA已成为极其热门的IC封装技术,其全球市场规模在2000年为12亿块,预计2005年市场需求将比2000年有70%以上幅度的增长。

五、CSP芯片尺寸封装

随着全球电子产品个性化、轻巧化的需求蔚为风潮,封装技术已进步到CSP(Chip Size Package)。它减小了芯片封装外形的尺寸,做到裸芯片尺寸有多大,封装尺寸就有多大。即封装后的IC尺寸边长不大于芯片的1.2倍,IC面积只比晶粒(Die)大不超过1.4倍。

CSP封装又可分为四类:

1.Lead frame Type(传统导线架形式),代表厂商有富士通、日立、Rohm、高士达(Goldstar)等等。

2.Rigid Interposer Type(硬质内插板型),代表厂商有摩托罗拉、索尼、东芝、松下等等。

3.Flexible Interposer Type(软质内插板型),其中最有名的是Tessera公司的microBGA,CTS的sim-BGA也采用相同的原理。其他代表厂商包括通用电气(GE)和NEC。

4.Wafer Level Package(晶圆尺寸封装):有别于传统的单一芯片封装方式,WLCSP是将整片晶圆切割为一颗颗的单一芯片,它号称是封装技术的未来主流,已投入研发的厂商包括FCT、Aptos、卡西欧、EPIC、富士通、三菱电子等。

CSP封装具有以下特点:

1.满足了芯片I/O引脚不断增加的需要。

2.芯片面积与封装面积之间的比值很小。

3.极大地缩短延迟时间。

CSP封装适用于脚数少的IC,如内存条和便携电子产品。未来则将大量应用在信息家电(IA)、数字电视(DTV)、电子书(E-Book)、无线网络WLAN/GigabitEthemet、ADSL/手机芯片、蓝芽(Bluetooth)等新兴产品中。

六、MCM多芯片模块

为解决单一芯片集成度低和功能不够完善的问题,把多个高集成度、高性能、高可靠性的芯片,在高密度多层互联基板上用SMD技术组成多种多样的电子模块系统,从而出现MCM(Multi Chip Model)多芯片模块系统。

MCM具有以下特点:

1.封装延迟时间缩小,易于实现模块高速化。

2.缩小整机/模块的封装尺寸和重量。

3.系统可靠性大大提高。

结束语

总之,由于CPU和其他超大型集成电路在不断发展,集成电路的封装形式也不断作出相应的调整变化,而封装形式的进步又将反过来促进芯片技术向前发展。

封装基板是PCB,即印刷线路板中的术语。简单来说就是电路板。

封装基板是Substrate(简称SUB),即印刷线路板中的术语。基板可为芯片提供电连接、保护、支撑、散热、组装等功效,以实现多引脚化,缩小封装产品体积、改善电性能及散热性、超高密度或多芯片模块化的目的。封装基板应该属于交叉学科的技术,它涉及到电子、物理、化工等知识。

以BGA、CSP、TAB、MCM为代表的封装基板(PackageSubstrate,简称PKG基板),是半导体芯片封装的载体,封装基板目前正朝着高密度化方向发展。而积层法多层板(BUM)是能使封装基板实现高密度化的新型PCB产品技术。

以上就是关于基板平面度要求全部的内容,如果了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

 
举报收藏 0打赏 0评论 0
 
更多>同类百科头条
推荐图文
推荐百科头条
最新发布
点击排行
推荐产品
网站首页  |  公司简介  |  意见建议  |  法律申明  |  隐私政策  |  广告投放  |  如何免费信息发布?  |  如何开通福步贸易网VIP?  |  VIP会员能享受到什么服务?  |  怎样让客户第一时间找到您的商铺?  |  如何推荐产品到自己商铺的首页?  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  粤ICP备15082249号-2