中华人民共和国行业标准YB4032-91电子版,是关于富铝红柱石的行业标准,请发邮箱village24@sina.com

   2023-02-14 21:34:29 网络1000
核心提示:YB 4032-91 蓝晶石 硅线石 红柱石1 主题内容与适用范围本标准规定了蓝晶石、硅线石、红柱石精矿的分类、代号、牌号、技术要求、试验方法、检验规则、包装和质量证明书。本标准适用于经选矿所获得的蓝晶石、硅线石、红柱石精矿,供高级耐火材料

中华人民共和国行业标准YB4032-91电子版,是关于富铝红柱石的行业标准,请发邮箱village24@sina.com

YB 4032-91 蓝晶石 硅线石 红柱石

1 主题内容与适用范围

本标准规定了蓝晶石、硅线石、红柱石精矿的分类、代号、牌号、技术要求、试验方法、检验规则、包装和质量证明书。

本标准适用于经选矿所获得的蓝晶石、硅线石、红柱石精矿,供高级耐火材料、技术陶瓷和硅铝合金等用。

2 引用标准

GB 2007 散装矿产品取样、制样通则

GB 5689 冶金矿产品包装、标志和质量证明书的一般规定

GB 6900 粘土、高铝质耐火材料化学分析方法

GB 7322 耐火材料耐火度试验方法

GB 8932.7 致密耐火浇注料线热膨胀试验方法

3 分类、代号、牌号

3.1 按矿物结构将产品划分为蓝晶石、硅线石和红柱石三个类别。

3.2 蓝晶石精矿-以“蓝”和“精”二个汉语拼音字母的大写字头“LJ”为代号;按Al2O3含量蓝晶石精矿分为LJ-58、LJ-55二个牌号。

3.3 硅线石精矿-以“硅”和“精”二个汉语拼音字母的大写字头“GJ”为代号;按Al2O3含量硅线石精矿分为GJ-58、GJ-54二个牌号。

3.4 红柱石精矿-以“红”和“精”二个汉语拼音字母的大写字头“HJ”为代号;按Al2O3含量红柱石精矿分为HJ-58、HJ-55、HJ-52三个牌号。

4 技术要求

4.1 产品理化指标应符合下表的规定。

项 目

指 标

蓝晶石

硅线石

红柱石

LJ-58

LJ-55

GJ-58

GJ-54

HJ-58

HJ-55

HJ-52

Al2O3,% 不小于

58

55

58

54

58

55

52

Fe2O3,% 不大于

0.8

1.5

1.0

1.5

1.0

1.5

2.0

TiO2,% 不大于

1.5

2.0

1.0

1.0

1.0

1.0

1.0

K2O+Na2O%不大于

0.3

0.5

0.5

1.0

0.5

0.8

1.2

耐火度,℃不小于

1790

1790

1750

1790

1750

水分,%不大于

1

灼减,%不大于

1.5

线膨胀率,%1500℃

必须进行此项检验,将实验数据在质量证明书中注明

注:需方对质量有特殊要求时,由供需双方协商。

4.2 产品粒度有供需双方商定。

4.3 产品中不得混入外来杂物。

5 试验方法

5.1 化学成分分析方法按GB 6900进行。

5.2 耐火度的检验方法按GB7322进行。

5.3 线膨胀率的检验方法按GB8932.7和本标准附录A(补充件)进行。

5.4 精矿中水分含量的检验方法按GB2007进行。

6 检验规则

6.1 产品质量由供方技术监督部门负责检验。

6.2 同一牌号的产品为一批。每批重量不超过50t。

6.3 每批为一取样单位。每批精矿采用包装插管法取样。综合试样重量不少于10kg,并缩分至化验室进行理化指标测定用样量和密封保存备用样量。

6.4 检验结果如有一项不符合技术要求时,可重新取样复验,以两次试验的平均值作为最终结果。

6.5 需方对产品质量有异议时,应在收货之日起二个月内提出,并会同供方重新取样复验,按复验结果判定产品质量。如需仲裁,有关事宜由双方商定。

7 包装、标志和质量证明书

7.1 产品在运输和贮存过程中,应有防雨和防雪设施。

7.2 除上述规定外,产品的包装、标志和质量证明书均按GB 5689规定进行。

储层评价常规分析项目

蓝 晶 石

一、矿产名称蓝晶石(Kganite)

二、矿床类型及其分布

1、矿床的成因类型

蓝晶石是一种变质矿物,主要产于区域变质结晶片岩中,其变质相由绿片岩相到角闪岩相。根据含蓝晶石的形态特点,将蓝晶石矿分成如下三类变态:(1)针状和纤维状集合体(纤维针状矿石) ; (2)富含空晶石的假象蓝晶石集合体(假象型矿石);(3)蓝晶石结核矿(结核型矿石)。如矿床同时含有上述三种变态,这类矿属于混合型。

2、矿床的工业类型

蓝晶石矿床工业类型主要有:黑云石榴蓝晶石片麻岩型、蓝晶石绿泥片岩型、黄玉蓝晶石石英片岩型、伟晶状蓝晶石型。

黑云石榴蓝晶石片麻岩型矿床产于太古代变质岩系中,含矿岩石以蓝晶石、石榴石、黑云母斜长麻岩为主,单晶石矿体呈层状、或大的扁豆体,单个矿体一般延长数百米,蓝晶石含量10~25%。

蓝晶石绿泥片岩型矿石产于太古代,蓝晶石不均匀地分布在绿泥片岩中,矿体呈透镜状,蓝晶石含量由百分之几到百分之二十几,原岩含镁较高,有时含有微量刚玉。

黄玉蓝晶石石英片岩型矿床产于元古代石英岩中,矿石以蓝晶石石英片岩为主,有时有蓝石云母石英片岩,蓝晶石含量10~30%,含有少量黄玉,并见有沿裂隙分布的放射聚晶状叶腊石。

伟晶状蓝晶石矿床,矿体呈不连续的小扁豆体,分布在古生代黑云母片岩中,矿石 组成简单,蓝晶石晶体一般在5厘米以上。

3、矿产的分布情况

我国从四十年代开始对蓝晶石矿产调查以来,特别是七十年代末到八十年代初,做了大量的普查勘探工作,发现蓝晶石矿20余处,分布 十几个省区。主要矿床有:江苏沐阳、韩山;河南隐山;河北邢台;内蒙古点布斯庙;新疆布拉盖;山西繁峙;安徽岳西、霍山;辽宁大荒沟;四川汶川;云南热水塘;吉林磐石;陕西详县党河口等。

三、矿床的主要工业指标

决定蓝晶石矿床工业价值的主要因素,为含矿率(即矿床蓝晶石矿物含量)和矿物化学成分与物理性能。矿床的一般工业要求见表1。

表1 蓝晶石矿床一般工业要求

原矿含量和开采技术条件

蓝晶石

边界品位,%

工业品位,%

可采厚度,m

夹石剔除厚度,m

≥5

≥10

≥1~2

≥1~2

注:圈定矿体时,须按蓝晶石矿物含量5~10%,

>10~15%,>15~20%,>20%分别试圈并计算储量。

四、矿石性质

1、矿石的矿物组成:

黑云石榴蓝晶石片麻岩型矿石,主要矿物为蓝晶石、黑云母、斜长石,次要矿物为石英、绢(白)云母、石榴石、十字石等。

蓝晶石绿泥片岩型矿石,主要矿物为蓝晶石、绿泥石,次要矿物为斜长石、黑云母、白云母、石英、石墨等。

黄玉蓝晶石石英片岩型矿石,主要矿物为蓝晶石、石英、白云母,次要矿物为黄玉、金红石、黄铁矿等。

伟晶状蓝晶石矿石,主要矿物为石英、蓝晶石、次要矿物为绢(白)云母等。

2、目的矿物的矿物特征

蓝晶石属三斜晶系,晶形常呈扁平柱状,颜色多为蓝色或蓝灰色,浅白色等。玻璃光泽,理面呈珍珠片光泽。硬度在不同方位上差异显著,在{ 100}晶面上平行晶体延长方向的莫氏硬度为4.5,而垂直晶体延长方向的莫氏硬度为6.5~7.0,故有在硬石之称。其矿物分子式、物理性能见表2。

表2蓝晶石矿物分子式及物理性能

矿物名称

分子式

晶系

晶形

硬度

比重

转变温度 (C°)

体积膨胀(%)

蓝晶石

AL2[SiO4]O

三斜

板状

5.5~7

3.56~3.68

1100~1480

16~18

蓝晶石矿物在高温下(1100~1650℃)煅烧转变为莫来石和熔融状游离二氧化硅(方石英),同时产生不同程度的体积膨胀。其转变反应式为

3(Ai2SiO5)1300℃以上3Al2O3·2SiO2+SiO2

莫来石具有很高的耐火度(1800℃时仍很稳定),化学惰性和良好的机械强度。其矿物性质见表3。

表3 莫来石的性质

化学式

密度,g/cm3

莫氏硬度

耐火度

A1[A1xSi2-xO5.5-0.5x]

3.16

6~7

1800°C时仍很稳定,1810 °C分解为刚玉和液相

五、工艺特性及主要用途

1、工艺特性

(1)热膨胀性:蓝晶石矿物在加热过程中转化为莫来石和SiO2的混合物,在这个转化过程中,矿物伴随着体积膨胀,并且形成良好的英来石针状网络,体积膨胀率16~18%。

(2)稳定性:蓝晶石矿物生产耐火材料稳定性比粘土质耐火材料高1.5倍。蓝晶石耐火砖比粘土砖的损耗低43%,比粘土砖寿命长150~200炉。

(3)耐火度高:一般粘土质耐火材料的耐火度为1670~1770℃,而蓝晶石的耐火材料通常大于1790℃,最高大于1850℃。

(4)不可逆性:蓝晶石矿物煅烧成莫来石,是一个不可逆的转化。在温度1810℃以下它是稳定的。因此莫来石耐火材料具有高温下体积稳定、膨胀率低、抗化学腐蚀性强、机械强度高和抗热冲击能力强的特点。

2、主要用途

蓝晶石矿物主要用作生产耐火材料、氧化铝、硅铝合金和金属纤维等。表4列出了蓝晶石矿物的主要用途。

蓝晶石矿物的主要用途

用 途

特 点

应用部门

耐火材料

(1) 在高温下体积稳定,不收缩

(2) 比其他高铝耐火材料生成本低

(3) 性能好。比粘土砖损耗低压43%,耐火度高达1825°C以上

(4) 节约能源。热容比粘土砖高12%,用于马丁炉可缩短冶炼时间,能耗少

(5) 加入不定形耐火材料中作高温膨胀剂,使产品在高温下不收缩和剥落

冶金、建材、机械、化工、轻工、核工业告等部门

硅铝合金和金属纤维

(1) 比用合成法(用熔炼金属硅和电解铝)或用电热还原高岭土等方法成本低,经济效益高

(2) 可满足制造汽车、宇宙飞船和雷达部件的特殊技术要求

冶金、机械、宇航等工业部门

氧化铝(烧结法)

比用霞石或高岭土为原料时物料处理量少1/2~1/3

冶金

防铸件粘砂新型面料(涂料、膏剂和各种混合剂

防粘砂性能比石英粉佳,接近锆石粉,而且价格低谦

冶金、机械等工业部门

莫来石

产品耐火度高,热膨胀低,抗化学腐蚀性强。机械强度高,抗热冲击能力强,使用寿命长

冶金、机械、化工等部门

高铝蓝晶石水泥

耐火度高达成1650°C

军工建筑、冶金等部门

高级陶瓷原料

制品耐高温、耐酸碱

轻工、化工等部门

六、产品质量标准

1、有用元素及主要伴生元素对原料的影响:

蓝晶石原料化学成分直接影响着蓝晶石耐火度,膨胀率和各制品的性能。为保证耐火制品具有高温条件下的良好性能,对原料化学成分,尤其是铝、硅、铁、钛、碱金属等的含量均有比较严格的要求。该原料用于其它方面的要求并不象用于耐火材料和冶炼铝硅合金那样严格,如用于铸钢和铸铁中的防粘沙物原料,要求Fe2O3 3%、TiO2 4%对铁和钢的铸件都没有什么影响。如果TiO2呈金红石状态存在,其含量即使很多,对铸件也不会产生坏的影响。

2、国家标准

我国蓝晶石矿物的利用,尚处于初级阶段,对原料化学成分的要求,还没有制定统一的国家标准。

3、部颁标准

我国对蓝晶石矿物精矿化学成分的要求,是按原地质部和冶金部1981年“东海会议”制定的详查阶段对精矿产品的一般参考指标,见表5示。

表5蓝晶石矿物精矿化学成分要求

成 分

Al2O3

SiO2

TiO2

Fe2O3

K2O+Na2O

含量,%

≥55~60

<42

<1.5

<1.5

<1

4、企业标准

近年来我国对蓝晶石矿作了一些工作,结合用户要求,制定企业标准,见表6示。

表6 我国对不同的行业蓝晶石矿物原料的质量要求(%)

成分

用途

Al2O3

SiO2

Fe2O3

TiO2

Na2O+K2O

耐火度,°C

高级耐火材料

>50

<1~2

<1~1.5

≥1790

技术陶瓷原料

>55

<0.5~0.15

<0.5

硅铝合金原料

>58

<37

<1.5

耐火材料(宝刚)

≥60

≤1.5

<2.0

≥1825

七、综合利用工艺技术:

1、综合利用技术方法及工艺流程

蓝晶石矿物的选矿,一般使用浮选、磁选、重选三种方法,也有采用电选方法,但常以重选浮选为主。磁选做为除杂手段。具体的选矿方法、药剂制度、选别流程要根据矿床特征、矿石组成、结构构造、围岩性质等情况而定。

细粒嵌布的蓝晶石矿石,主要采用浮选方法。因为蓝晶石矿物与脉石矿物与脉石矿物的比重不大,一般不考虑重选。原则工艺流程见图1所示。

粗粒嵌布蓝晶石矿石,包括粗粒级和细粒结核状矿石,合理的选矿工艺是重选或重浮联合。首先将矿石分成粗细两个粒级,粗粒级用重选摇床处理,细粒级浮选法回收。入选粒度:粗粒35~65目,细粒-65目。流程的最大特点是避免了粗粒蓝晶石的过粉碎,提高了回收率,同时也保证了精矿中大于65目的蓝晶石矿物粒度。原则工艺流程见图2所示。

混合型蓝晶石矿石,包括粗粒嵌布和细粒嵌布的两种类型的矿石,可采用重浮联合流程(见图2)。也可采用分级浮选法,选矿流程为:脱泥后的物料分成+60目和-60目二个粒级,然后分别进行浮选,其优点是粗粒蓝晶石回收率高。原则工艺流程见图3。

原矿 原矿

磨矿 磨矿

浮 杂 +分 级 -

重 选 浮选 泥

易浮物蓝晶石 浮选

精 选 精矿尾矿 精矿 尾矿

尾矿

精矿中矿

图1 单一浮选原则工艺流程 图2 重一浮联合原则工艺流程

磨矿

原矿 磨矿

脱 泥

泥 + 分 级 -

浮 选 浮 选

精矿 尾矿 精矿尾矿

图3 分级浮选原则工艺流程

2、开发生产实例

蓝晶石矿物的主要生产国有美国、原苏联、印度、南非、法国、加拿大、澳大利亚等国。我国对蓝晶石矿石的选矿研究始于70年代末,目前只有少数几个矿山建有选矿厂。下面介绍我国河北魏鲁蓝晶石矿开发生产情况。

(1)原矿性质

该矿区蓝晶石赋存于石榴黑云斜长片麻岩中。根据矿石的基本性质及矿物成分,矿石可分为三个基本自然类型:①含石榴蓝晶黑云斜长片麻岩;②含石墨蓝晶黑云斜长片订岩;③含石榴蓝晶黑云变质岩。其中含石榴蓝晶黑云斜长片麻岩为本区主要的矿石自然类型。矿石的矿物组成见表7。原矿的化学成分见表8。

表7 魏鲁蓝晶石原矿的矿物组成

主要矿 物

脉石矿物

次要矿物

矿物名称

含量

蓝晶石

石榴石

独居石

石 墨

9.37%

石英

磷灰石、电气石

10~15%

黑云母

锆石、磁铁矿

990.8g/m3

斜长石

硅灰石

2%

钾长石

金红石

表8 魏鲁蓝晶石矿原矿化学成份(%)

化学成份

SiO2

Al2O3

Fe2O3

FeO

TiO2

CaO

MgO

K2O

Na2O

含量

54.34

25.51

1.62

5.11

1.09

0.49

1.87

4.25

O.88

(2)工艺流程

魏鲁蓝晶石选厂采用磁选一浮选流程。选矿工艺流程见图4。原矿磨至-0.2mm,脱泥后进行磁选作业,磁选精矿进入重选(摇床)作业,获得铁铝榴石精矿;磁选尾矿作为浮选蓝晶石原料。浮选是在常温下用石油磺酸钠作捕收剂,硫酸作pH值调剂(pH=2—3)。经一粗一精选别作业,再经脱泥后得到蓝晶石精矿。

(3)产品规格

魏鲁蓝晶石矿除生产蓝晶石浮选精矿外,还生产颗粒较大、品位较高的手选蓝晶石精矿。产品规格见表9。

原矿

筛 分

棒磨

脱 泥

泥1 磁 选

摇 床 浮 选

铁铝榴石尾矿1 精 选尾矿2

脱 泥中矿

蓝晶石泥2

图4魏鲁蓝晶石矿选矿工艺流程

表9 魏鲁蓝晶石矿产品规格

产品

化 学 成 份,%

耐火度(°C)

SiO2

Al2O3

TiO2

Fe2O3

CaO

MgO

Na2O

K2O

浮选

精矿

36.72

57.72

0.21

1.44

0.23

0.16

0.11

0.28

1790

手选

精矿

39.87

55.90

0.53

0.73

0.15

0.27

0.25

0.46

1825

(4)技术经济指标

魏鲁蓝晶石矿技术经济指标(1989年)见表10。

表10魏鲁蓝晶石选矿技术经济指标

项 目

单 位

指 标

原矿处理量

精矿产量

矿石粒度:

原矿粒度

入磨粒度

入选粒度

矿石品位:

原矿

精矿

尾矿

选矿比

选矿回收率

药剂耗量:

石油磺酸钠

硫酸

Kt/a

t/a

mm

mm

-200目含量,%

%

%

%

%

g/t

g/t

30

3000

300

20

50

Al2O3≥10

Al2O3≥56

Al2O3≤2

≥10

≥70

1500

1000

八、开发利用现状及发展趋势

1、开发利用现状、存在问题及解决对策

随着工业利用范围的扩大,蓝晶石精矿需求量将会不断增长,其增长率一般每年为5~7%,在钢铁工业方面增长率每年为10%。预计明年我国冶金工业需用蓝晶石量可达4~6万吨;电器、无线电、化学瓷、高强瓷等行业需用蓝晶石量可达1.4万吨;若加强出口能力,约为3万吨。

蓝晶石开发利用存在产品与市场需求不对路的局面,高质量蓝晶石产品供不应求,低质量蓝晶石产品已趋饱和,造成市场缺口较大。

应加强选矿技术研究,开发出经济上合理的高质量蓝晶石产品生产技术,改变目前供求矛盾。

发展趋势:

2. 发展趋势:

(1)蓝晶石精矿在钢铁工业、制备地板和墙体耐火砖等方面的用量将有较大增长;在玻璃和陶瓷工业方面的用量将处于稳定状态。

(2)对蓝晶石精矿的要求主要是向高纯度方向发展,其制品向多种和高质量方面发展。

(3)重选及反浮选工艺用于超纯度蓝晶石精矿的生产是有发展前途的,应加强应用技术研究及生产转化。

红柱石详细资料大全

储层评价的常规分析项目包括薄片鉴定,孔、渗、饱测定,粒度分析和重矿分析等。它们是储层评价中必不可少的基本测试项目。相对应的石油天然气行业标准为:SY/T5913—2004“岩石制片方法”、SY/T5368—2000“岩石薄片鉴定”、SY/T5336—2000“岩心常规分析方法”、SY/T5434—1999“砂岩粒度分析方法”,以及SY/T6336—1997“沉积岩重矿物分离与鉴定方法”。

72.9.1.1 薄片鉴定

方法提要

试样经切片、胶固,和粗、细、精磨平面以后,粘在载物片上,然后再进行粗、细、精磨片。盖好盖片,置于岩石偏光显微镜下,观察鉴定,进行分类和命名。

仪器和设备

切片机、自动磨片机、磨片机、抛光机。

偏光显微镜:配备机械台、主数器、照相系统。

电炉、低温(45~100℃)电烘箱、热水器。

Ф25mm聚乙烯模具。

试剂和材料

黏合剂“501”、不发光的“502”、固体冷杉胶、环氧树脂。

染色剂茜素红、铁氰化钾、氢氟酸、亚硝酸钴钠,氯化钡、玫棕酸钾盐。

岩石薄片制片

每块试样至少切取25mm×25mm×5mm或Ф25mm×5mm的岩样两块,一块磨制薄片,另一块做手工标本。岩屑试样必须选取3个以上岩样。将需要胶固的岩样用电炉在温度50~60℃加热,除掉轻质油及水分。将胶固好的岩样在磨片机上用100号碳化硅金刚砂与水混合粗磨,然后进行第二次胶固。第二次固前的岩样,放在磨片机上用W28号碳化硅金刚砂与水混合细磨,磨至平面光滑。然后将细磨好平面的岩样用W7号白色刚玉金刚砂与水混合在玻璃板上精磨,磨至平面光亮为止。将固体冷杉胶涂在载物片的中尖部位和岩样平面上,使岩样与载物片胶合。将粘好在载物片上的岩样,在磨片机或调好厚度的自动磨片机上粗磨,至厚度为0.28~0.40mm,岩片不脱胶,将粗磨好的岩片,在磨片机上磨至0.12~0.18mm,岩片保持完整。将细磨好的岩片,在玻璃板上用W20号白色刚玉金刚砂与水混合精磨,至0.04~0.05mm。偏光显微镜下,石英干涉色为一级黄色,无掉砂现象。然后用W7号白色刚玉金刚砂与水混合在玻璃板上磨至0.03mm。偏光显微镜下,石英干涉色为一级灰白色。如为碳酸盐岩,则磨至0.04mm,偏光显微镜下,结构清晰,干涉色为高级白。

镜下观察和鉴定内容

在手标本肉眼观察鉴定的基础上,制好的岩薄片都要置于偏光显微镜下观察,系统描述鉴定岩石薄片鉴定内容,视不同岩性而有差异。

1)砂岩。

a.矿物成分及含量。碎屑颗粒,杂质和胶结物的成分及含量。

b.结构。是指各组分的形态特征,包括碎屑颗粒本身的特点、胶结物的特点,以及碎屑与胶结物之间的关系。

c.显微构造。描述镜下可见的构造,如颗粒排列方式、结核构造、显微粒序层理、微细纹理、微冲刷面、同生变形及生物扰动构造等。

d.储集空间类型。按大小形态分为孔、洞、缝3大类,并按成因分类13个亚类,见表72.23。

表72.23 孔隙类型表

e.岩石定名。采用颜色+构造+粒度+成分方式进行岩石定名,如灰白色块状中粒石英砂岩。一般砂岩类型可分为纯石英砂岩、石英砂岩、次岩屑长石砂岩或次长石岩屑砂岩、长石岩屑砂岩或岩屑长石砂岩、长石砂岩、岩屑砂岩等,见表72.24。

表72.24 砂岩分类表(SY/T5368—2000)

2)碳酸盐岩。

a.矿物成分及含量。

碳酸盐矿物主要是方解石、白云石,其次是铁白云石、铁方解石、菱铁矿和菱镁矿等。还有自生的非碳酸盐矿物,如石膏以及陆源碎屑混合物,如黏土矿物等。

矿物含量镜下面积百分比统计。凡属交代矿物,都应计入矿物百分比中,但裂缝或空洞内的任何填充物,均不计入。

b.结构组分和结构类型。

碳酸盐岩的结构在一定程度上反映了岩石的成因,它是岩石的重要鉴定标志,也是岩石分类命名的依据。

① 具颗粒结构的碳酸盐岩。颗粒类型包括内碎屑、鲕粒、生物颗粒、球粒、藻粒等填隙物由化学沉淀物 (亮晶胶结物) 、泥晶基质及少量陆原杂基及渗流粉砂组成注意它们的胶结类型。② 具晶粒结构的碳酸盐岩。注意晶粒的大小,自形程度。③ 具生物格架的碳酸盐岩。描述造礁生物种类、骨架的显微结构、矿物成分,大小分布等特点。

c.沉积构造。包括显微层理、微型冲刷、充填构造、结核构造、缝合线及成岩收缩缝等,乌眼及示底构造、生物钻孔、潜穴生物扰动等。

d.成岩作用。主要有溶解作用、矿物的转化作用和重结晶作用、胶结作用、交代作用、压实作用和压溶作用。注意观察这些成岩阶段 (同生期、早成岩期、晚成岩期、表生期) 、不同成岩环境 (海底成岩环境和大气淡水成岩环境,浅—中埋藏成岩环境、深埋藏成岩环境、表生成岩环境) 中的特点和识别标志。

e.孔隙和裂缝。用铸体薄片观察原生及次生孔隙,以次生孔隙发育为特征的储层还包括构造裂缝描述与观察。从孔隙结构类型来讲,主要有粒内、粒间、晶间、生物格架、遮蔽、鸟眼、铸模等孔隙,还有溶孔、溶缝、溶沟、溶洞等。

f.岩石综合定名 (表72.25) 。附加岩石名称 (颜色 + 成岩作用类型 + 特殊矿物 + 特殊结构) + 岩石基本名称 (结构命名 + 矿物成分) 命名,主要岩石类型有: 泥晶灰岩或白云岩、粒屑泥晶灰岩或白云岩、泥晶粒屑灰岩或白云岩、亮晶粒屑灰岩或白云岩。表72.25 碳酸盐岩组构分类命名

岩石矿物分析第四分册资源与环境调查分析技术

3) 岩浆岩。

a.结构。① 岩浆岩结构按晶粒大小可分粗粒大于 5mm、中粒 1~ 5mm、细粒 0.1~1mm。② 按结晶程度可分全晶质、隐晶质。③ 按矿物关系可分花岗结构、交织结构、辉绿结构等。

b.构造。有流纹构造、气孔构造、杏仁构造及珍珠构造等。

c.岩浆岩岩石类型。见表72.26。

表72.26 岩浆岩岩石类型及特征

d.命名原则。岩浆岩的名称包括基本名和附加名称两部分,基本名称在后,附加名称在前。基本名称根据主要造岩矿物确定,附加名称要反映岩石的特殊性,可以是次生变化、结构或构造等。

4) 变质岩。

a.矿物成分。

主要矿物,石英、方解石、钾长石、角闪石、辉石、磷灰石等。次要矿物,绿泥石、白云母、钠长石、刚玉等。特征矿物,红柱石、矽线石、董青石、蓝晶石、符山石等。

b.岩石类型。变质岩所分类型见表72.27。

表72.27 变质岩岩石类型及特征

① 区域变质岩,板岩、千枚岩、片岩、片麻岩、长英质粒岩类、角闪质岩类、麻粒岩类、榴辉岩类和大理岩类。② 混合岩类,注入混合岩、混合片麻岩、混合花岗岩。③ 接触变质岩。④ 动力变质岩,包括构造角砾岩、压碎岩、糜棱岩、构造片状岩类等。

c.命名原则。特征矿物加主要的片状或柱状矿物 (长石种类) 加片麻岩。

5) 火山碎屑岩。火山碎屑岩是火山作用产生的各种碎屑物,沉积后,经熔结、压结、水化学胶结等作用形成的岩石。

成分、主要类型特征。火山碎屑岩主要由火山碎屑物和火山填隙物两部分物质组成。根据成因、组分含量、成岩方式及碎屑粒度可将火山碎屑岩分为 3 大类 5 个亚类,见表72.28。

表72.28 火山碎屑岩分类

72.9.1.2 流体饱和度、孔隙率和渗透率测定

流体饱和度、孔隙率和渗透率是储层孔隙特征的 3 个最基本的参数,它对储层的认识与评价、油气层产能的预测、油水在油层中的运动、水驱油效率以及提高采收率均具有实际意义。我国目前采用的测定方法是 SY/T 5336—2000 “常规岩心分析方法”。

(1) 常规岩心分析试样的取样与保存

选择时,要根据储层岩性变化、非均质特性及其代表的深度,选取有代表性的岩样,并及时快速包装,使岩样中的流体尽可能保持原状。

井场取样与保存

井场取样主要是取分析油水饱和度的岩样或有特殊性要求的岩样。凡为其他分析项目所用的岩样,可在岩心送到实验室后再取。

进场取样顺序是: 岩心出筒,清除岩心表面钻井液,立即按顺序排列好,进行岩心描述,标明井号、深度、筒次和块号。

井场取样每米最少应取 3 块样,取样长度 10cm 左右。井场取得的试样,根据测试项目要求,储存时间长短及岩性的不同,选用不同包装和保存方式。分析油水饱和度的岩样,采用避免液体蒸发及防止流体在岩样内移动的保存方式,常用容器密封法对于疏松或胶结差的岩样,采用内径与岩样外径相近的容器或铝箔加适当支撑措施的保存方法。

实验室取样

将从岩心中心部位取来的岩样分作 2 份,一份供取孔隙率、渗透率试样另一份取40 左右,打成碎块,放入已称重的烧杯中,再将烧杯及岩样一起称重,供测定岩样中水量样。作渗透率测定的试样,是用金刚石取心钻头及锯片把岩心钻切成圆柱形。对疏松岩心,冷冻的可用钻床取样,未冷冻的则用手工或专用工具取样。小圆柱岩样的外径为1.9~ 3.8cm,最小长度与直径比为 1。作孔隙度测定试样的取样方式与作渗透率试样的取样方式相同,也可与测渗透率试样共用 1 块岩样。

(2) 常规岩心流体饱和度测定

方法提要

将称重的岩样放油水饱和度测定仪的岩心室中。利用沸点高于水的溶剂蒸馏出岩样中的水分,并将岩样清洗干净,供干瓶称重。用抽提前后岩样的质量差减去水量,即得到含油量。

仪器设备

油水饱和度测定仪见图72.16。

测定步骤

在抽提岩样前,先将所用溶剂预蒸一遍,至少连续蒸 8h,保证其中无水分。把称量后的岩样放入抽提器的岩心杯中,加热抽提到水量不再增加为止。规定每小时读取 1 次水量,连续3 次,读数变化不超过 0.1mL 即可。疏松砂岩需抽提 2~3h胶结好的需6~8h致密而又含高黏度原油的岩样,需更长时间。抽提及烘样完毕后称量岩样。用岩样抽提前后的质量之差减去水量 (设水的密度为1g/cm3) ,可得到油的质量,再除以油密度,得到油体积。

计算公式

岩石矿物分析第四分册资源与环境调查分析技术

式中:So为油饱和度,%Sw为水饱和度,%Vo为油体积,cm3Vw为水体积,蒸出水量的读数,mLm1为岩心杯重+岩样重,gm2为岩心杯重+干岩样重,gm3为岩心杯重,gρo为油密度,g/cm3ρw为水密度,g/cm3ρa为岩样视密度,g/cm3!o为岩样的有效孔隙度。

(3)常规岩心孔隙度测定(液体饱和法)

方法提要

将用液体(已知密度)饱和了的岩样,悬挂于饱和用的液体中称量。再将岩样表面上的液体擦掉,在空气中称量。岩样在空气中与液体中两次称量之差,除以液体的密度就得到岩样的总体积。孔隙体积与总体积之比即为岩样的孔隙度。

仪器设备

液体饱和仪装置。

图72.16 油水饱和度测定仪

测定步骤

将抽提烘干的已知质量的岩样放入真空干燥器中,抽空 2~8h,真空度低于 133.3Pa(1mmHg) 。对渗透率很低的岩样,抽真空时间需要 18~ 24h。将事先经过滤和抽空处理饱和用的液体引入真空干燥器中,继续抽空 1h。随后在常压下浸泡 4h 以上。岩样饱和后,将岩样悬挂在盛有饱和液体的烧杯中,使岩样全部浸入液体中称量。迅速擦去岩样表面的液体并称量。岩样在空气中与液体中两次称量之差,除以液体的密度就得到岩样的总体积。岩样中油、气、水体积可由流体饱和度测定法测得。岩样中油、气、水体积之和即为孔隙体积。由此可计算得到岩样的孔隙度。计算中的颗粒体积可用氦孔隙计法测得。

孔隙度计算公式:

岩石矿物分析第四分册资源与环境调查分析技术

式中:!为孔隙度Vp为孔隙体积,cm3VG为颗粒体积,cm3Vt为总体积,cm3。

(4)常规岩心气体渗透率测定

渗透率是衡量流体在压力差下通过多孔隙岩石能力的一种度量,单位常用10-3μm2。

方法提要

待测试样用游标卡尺和其他方法相结合,测得其平均横截面积。将此干净岩样置于气体渗透率测定仪的岩心夹持器中。开通干燥气体使之通过岩样,测量气体的流速,通过调节气体的流速来调节岩样两端的压差,记录进出口压力及气体流速。根据气体一维稳定渗滤达西定律计算渗透率。

仪器设备

气体渗透率测定仪。

测定流程

测定流程有2个,分别如图72.17和图72.18所示。

图72.17 测定气体渗透率流程之一

图72.18 测定气体渗透率流程之二

测定步骤

对形状规则的岩样,可用游标卡尺测量其尺寸如岩样需用其他材料包封的,则应在包封前测定岩样尺寸,包封后再次测量。对两端平行而形状不规则的岩样,用游标尺测其长度,用其他方法测其总体积,用总体积除以长度就可得到岩样的平均横截面积。将所测干净的岩样置于合适的岩心夹持器中,调整好气体渗透率测定仪。干燥气体通过岩样时,测量气体的流速,通过调节气体的流速来调节岩样两端的压差。记录进出口压力及气体流速。计算岩样的气体渗透率。

渗透率计算

气体在岩样中流动时,由气体一维稳定渗滤达西定律可得到下列计算渗透率的公式:

流程之一:

岩石矿物分析第四分册资源与环境调查分析技术

或流程之二:

岩石矿物分析第四分册资源与环境调查分析技术

式中:k为渗透率,10-3μm2Q0为绝对大气压时气体流量,cm3/spa为大气压力,MPaμ为气体黏度,mPa·sL为岩样长度,cmA为岩样截面积,cm2p1为进口压力,MPap2为出口压力,MPaC为仪器上直读出的换算系数 Q为节流器的流量值,cm3/shw为节流器水柱高度,mm。

72.9.1.3 砂岩粒度分析

测定碎屑沉积物中不同粗细颗粒含量的方法称粒度分析。粒度是碎屑沉积物的重要结构特征,是其分类命名(如砾、砂、粉砂、黏土等)的基础,是用来研究其储油性能的重要参数(如粒度中值、分选系数等),有时也可用粒度资料作为地层对比的辅助手段。粒度分析更广泛地应用于沉积学的研究,近几年来已成为沉积环境研究的重要标志。

方法提要

粒度分析一般有3种分析方法,即筛析法、沉降法和薄片粒度分析法。

a.筛析法。有机械筛析及音波振动式全自动筛分粒度仪自动筛析,用1/3~1/4#间距的不同孔径的筛网将碎屑颗粒从粗至细逐级过筛分开,求得各粒级的质量分数(%)。

b.沉降法。利用颗粒在水中沉降速度来划分粒级。

c.薄片粒度分析。对于固结紧密,难于松散的砂岩或粉砂岩只能用薄片进行粒度分析。测得的是一定粒度的颗粒百分数,要把这数值换算成各粒级的质量分数,与其他方法所得数据一致,以便对比与绘图应用。目前已发展成图像法及颗粒计数法来取代人工薄片颗粒计数法。

本文仅涉及前两种方法,相对应的行业标准为SY/T5434/T1999“砂岩粒度分析方法”。

仪器和装置

电烘箱。

电动振筛机。

分析天平感量10mg。

分析天平感量0.1mg。

远红外干燥箱。

标准套筛。

湿筛0.053mm或0.034mm。

研钵或研磨机。

烧杯1000mL。

量筒1000mL。

蒸发皿50mL。

试剂

盐酸。

硝酸。

乙醇。

六偏磷酸钠。

分析步骤

1)岩样处理。将岩样粉碎或小于5mm的小块,用溶剂抽提法和热解法除去岩样中的原油。不同类岩样采取下列处理方法。

方解石胶结物,先将岩样放入容器中,注入!=10%~15%的HCl,搅拌,至反应完全,倒出残酸,用水反复冲洗至中性为止在酸洗过程中,防止倒掉极细的颗粒,将酸洗后的岩样置于烘箱内烘干。

白云石胶结物,用!=10%~15%的热HCl溶解。

赤铁矿、褐铁矿胶结物,用(1+4)HCl煮沸。

黄铁矿胶结物,用!=50%~10%的HNO3煮沸。

黏土矿物胶结物,用水浸泡,置于水浴锅稍加热。

膏盐胶结物,用水浸泡并加热,如为硬石膏胶结,可用盐酸加热处理。

2)盐酸加热处理。处理好的岩样用四分法或均分器取样。称取10~50g(精确至0.1g)试样,放入烧杯内,加适量清水,再加20mL0.0833mol/L六偏磷酸钠溶液,浸泡12h,使岩石颗粒全部分散开,不破坏颗粒大小及形状,然后用小于0.063nm的筛网,置于1000mL量筒上的漏斗中,用细而急的蒸馏水反复冲洗,至细颗粒全部冲入量筒内。此悬浮液留作沉降分析,用水量不能超过95mL,留在湿筛上的试样,用水冲洗到原先盛样的烧杯里,放入干燥箱内烘干,作筛析分析用。

3)筛析分析。粒径大于0.0625mm的试样作筛析分析。用分析天平称样,按!0.25组成的套筛,依序套好,振筛10min,将筛后的砂粒分别倒入器皿内,逐个称量,底盘中的砂粒倒入该样的悬浮液中,作沉降分析。

4)沉降分析。将盛有悬浮液的量筒,加1000mL水,根据当天的水温及采样深度,列出各颗粒级的采样时间表,用搅拌器在量筒内均匀搅拌1min(60次)。在某粒级的采样时间到达前30s,平稳地将吸液管放下至预定深度处,准时吸取25mL,放入已编号并称量的蒸发皿内,吸液时间控制在20s左右。在烘箱中烘干悬浮液,再移入干燥箱,在105℃下恒温2h,取出放入干燥器中,冷却后称量。

5)计算。筛析结果计算:

岩石矿物分析第四分册资源与环境调查分析技术

式中:k1为校正系数m1为筛前砂粒总质量,gm2为筛后各粒级总质量,gm3为各粒级砂质量,gm4为校正后各粒级砂质量,gx1为各粒级含量,%m5为称取试样质量,g。

沉降分析结果计算:

岩石矿物分析第四分册资源与环境调查分析技术

式中:m6为某粒级干砂质量,gm7为器皿质量,gm8为分散剂溶质质量,gm9为器皿与分散剂溶质及干砂的总质量,gV为量筒内悬浮液总体积,mLV1为吸液体积,mLx2为占试样含量,%x3为大于某粒级含量,%x″3、x'3为大于某粗、细粒级含量,%x4为各粒级含量,%∑x为累积含量,%。

72.9.1.4 重矿物分析

重矿物是指砂岩中密度大于2.86g/cm3的矿物。

方法提要

试样置于相对密度大于2.86的重液中。利用重液和矿物相对密度差,使矿物沉浮而分离,在偏光显微镜下进行各种重矿物的鉴定和颗粒统计。计算各种重矿物的含量。

仪器和装置

偏光显微镜。

双目实体显微镜。

阿贝折射仪。

投射照明仪灯12V,50W。

岩石破碎机。

电热干燥箱。

分析天平感量1mg和10mg。

标准分析筛孔径0.25mm、0.063mm。

量杯1000mL。

烧杯1000mL。

蒸发皿50mL。

分液漏斗1000mL。

瓷研钵。

密度瓶。

棕色磨口瓶2500mL。

试剂和材料

三溴甲烷(ρ2.86~2.89g/mL)。

无水乙醇。

液体石蜡。

Α-溴代萘。

盐酸。

二碘甲烷。

鉴定步骤

1)试样的分离。经过粗碎的试样,放入1000mL烧杯中,加入500mL(5+95)HCl浸泡。每隔1h搅拌1次。若碳酸盐胶结物多时,需要再加酸。试样一般用盐酸浸泡8h。浸泡后的试样,用瓷研磨锤将试样磨成单独颗粒,倒入1000mL量杯中,放水冲泥,大于0.01mm的颗粒不要被冲走,每隔30min搅拌1次,直至量杯内溶液全部透明为止。烘干试样,用孔径0.063mm和0.25mm的筛子过筛,取0.063~0.25mm的颗粒作重矿物分离。

用三溴甲烷配置密度2.86~2.89g/cm3的重液进行重矿物分离。称取5g干燥的试样,倒入装有重液的分液漏斗,每隔15min用玻璃棒搅拌一次,共4次。最后一次搅拌后静置30min。分出重矿物,用无水乙醇洗净,放入烘箱中在105℃恒温1h,取出,放在干燥器中30min后,用感量0.1mg的分析天平称量,待用。

2)镜下鉴定。置样片于显微镜下,观察一遍,大致了解重矿物种类和分布情况。然后从载玻片一端开始,按顺序向另一端移动,选取有代表性的视域进行各种重矿物鉴定和颗粒统计,分别填入原始记录表中。透明重矿物在透光下鉴定统计。不透明重矿物在反射光下鉴定统计。统计矿物时,要求陆源矿物总数在400颗以上,不足者,将矿物全部数完。自生矿物大于70%时,应数出全部陆源矿物,自生矿物含量可数出一个或部分视域按统计陆源矿物的视域数加倍即可。矿物统计完后,将片子全面检查一遍,补充遗漏矿物并记录。

3)含量统计。将各视域的相同矿物颗粒相加,得出各矿物累计颗粒数,将各陆源矿物累计颗粒数相加,得出陆源矿区颗粒总数,将各自生矿物累计颗粒数相加,得出自生矿物颗粒总数。将陆源矿物颗粒总数和自生矿物颗粒总数相加,得出矿物颗粒总数。

岩石矿物分析第四分册资源与环境调查分析技术

任务钻石

红柱石(Andalusite)是一种铝矽酸盐矿物,它是制造火花塞里的耐火材料和瓷器的原料。它是典型的低级热变质作用成因的矿物,常见于接触变质带的泥质岩中。主要形成于较高的地温梯度、压力与温度比低的条件下。

基本介绍中文名 :红柱石 外文名 :Andalusite 别称 :菊花石 类别 :铝矽酸盐矿物 颜色 :褐绿色、黄褐色、粉色、紫色、绿色 光泽 :玻璃光泽 透明度 :透明至半透明 晶系 :斜方晶系 解理 :一组平行{110}方向的中等解理 断口 :参差状 硬度 :硬度为7-7.5 多色性 :三色性,褐黄绿、褐橙和褐红色 光性 :二轴晶,负光性 红石柱简介,石柱信息,分布范围,工业指标,性质,矿物组成,矿物特征,表面性能,化学组分,理论化学组分,光学性质,工艺特性,主要用途,作耐火材料,耐火砖,利用方法,质量标准,国家标准,发展趋势, 红石柱简介 红柱石与蓝晶石、矽线石为同质多象变体。其英文名称Andalusite来自矿物的首次发现地——西班牙的安达卢西亚Andalusia,但直至在斯里兰卡、特别是在巴西发现宝石级红柱石后,人们才第一次将红柱石归入宝石类别中。 红柱石化学组成为Al 2 [SiO 4 ]O、晶体属正交(斜方)晶系的岛状结构矽酸盐矿物。与蓝晶石、夕线石成同质多象。通常呈柱状晶体,横断面接近四方形。有些红柱石在生长过程中俘获部分碳质和粘土矿物,在晶体内定向排列,在横断面上呈十字形,称空晶石。集合体形态多呈放射状或粒状,呈放射状的,俗称菊花石。呈粉红色、玫瑰红色、红褐色或灰白色,玻璃光泽,柱面解理中等。摩斯硬度6.5~7.5,比重3.15~3.16。 红柱石 红柱石常见于泥质岩和侵入体的接触带,是典型的接触热变质矿物。中国北京西山盛产放射状红柱石。世界其他著名产地有西班牙的安达卢西亚、奥地利的蒂罗尔州、巴西的米纳斯吉拉斯等。 红柱石加热至1300℃变为莫来石,是高级耐火材料,用途同蓝晶石。淡红色或绿色透明的晶体可作宝石。空晶石因在粉红、灰白的底色上衬托有黑十字,常被加工成工艺装饰品。 红柱石有一个变种叫空晶石。在空晶石的剖面会呈现出黑色的十字结构。这种十字结构是红柱石在形成时接收了一些碳和粘土所致。这种空晶石常被制成人们佩带的小饰物。 红柱石一般呈柱状晶体,它的断面差不多是四方形。红柱石的晶体聚在一起成放射状或粒状。对于成放射状的红柱石,人们常称作“菊花石”,意为它们像菊花的花瓣开放一样。 红柱石为粉红色、红色、紫色、绿色、红褐色、灰白色,灰黄色及浅绿色,具有玻璃光泽。有些质量好且透明的红柱石晶体还被当作宝石。 中国对红柱石的开发利用,已展现出广阔的前景。中国红柱石的使用起步较晚,从78年开始对红柱石等高铝矿物资源进行了找矿、评价和勘探,工业上对它的要求则是依据使用条件而变化。 石柱信息 晶体形态:斜方双锥晶类,晶体呈柱状。 红柱石 主要单形有:斜方柱m、n,平面双面c。 晶系和空间群:正交晶系,D122h—Pnnm。 硬度:6.5-7.5。 比重:3.13-3.16g/cm 3 。 解理:不完全解理。 断口:由交叉好的解理或裂理产生的细长断口。 颜色:常呈灰白色或肉红色、呈兰、绿,紫色者少见。 条痕:白色。 透明度:透明。 光泽:玻璃光泽。 发光性:无。 其他:性脆。 分布范围 根据近几年来对红柱石的找矿效果得知,中国这类矿物资源十分丰富,有利于这类矿物生成的地质条件普遍存在。辽宁、吉林、青海、甘肃、陕西、山东、河南、新疆、福建、湖北、四川,北京等省市都有所发现。许多地区的矿床中红柱石矿物含量较高,且矿物组成简单,贮量多在中型以上。 工业指标 对红柱石矿的开发利用,总的来说,应着眼于经济效益,从各种使用角度提出不同的指标要求。目前国内在这方面尚无统一规定,现参照国家地质总局地生——(1978)1201号、冶金部(78)冶基字第3278号联合颁发的:《关于安排兰晶石普查勘探和矿山设计建设工作的通知》,简述如下: 1、红柱石原矿品级划分(矿物量):边界品位5%,Ⅰ级品≥8%,Ⅱ级品5~8%。 2、可采厚度和夹石剔除厚度均为1米。 性质 矿物组成 红柱石多数呈斑状变晶结构。斑晶内含有碳质、石英、云母、金属矿物、石榴石和电气石等。有些伴生矿物如石榴石、碳质等可通过选矿加以回收。 红柱石 矿物特征 红柱石属于斜方晶系,晶体沿C轴延伸呈斜方柱形。由于柱面夹角为89℃左右,因而外观很象四方柱形。集合体呈放射状、粒状,可见穿插双晶。柱面解(110)完全。薄片无色,有时略带粉红色调,在同一片面上颜色分布往往也不均匀,深浅不一,呈斑点状。平行或对称消光,具微弱多色性:Npi淡红(1.629~1.639),Nm淡绿(1.633~1.639),Ng浅绿(1.637~1.650)。横切面近四方形,有时可见两组近于正交的解理。在红柱石中,有时见有黑色碳质物包裹体(可称空晶石)。利用红柱石多带色的特点可以将它和矽线石加以区别。 内外部显微特征:红柱石包体主要为磷灰石、金红石、白云母、石墨及各种黏土矿物。一些矿物包体还具有十分完整的特征晶形,如短柱状磷灰石微晶和针状金红石等等,气液包体也是红柱石中常见的包体,此外在显微镜下还常见色带、解理、双晶纹等生长结构。空晶石中的包体为黑色碳质包体,呈十字形分布。 表面性能 红柱石本身无电磁性,但其表面性质又决定着表面断裂键的类型和断裂程度,这与其结晶化学过程有关。它的晶体被破碎时将产生高能组合优势的阳离子Al 3+ 、Fe 2+ 等。红柱石表面亲水,破碎后其上部分存在有金属阳离子。零电点PH为7.2,一般比矽酸盐破碎物要高。 红柱石矿物由Al-O键和Si-O键组成。铅氧体PH=9时,出现零电点。而石英在PH=2或稍大于2时,就出现零电点。由此可以认为铝氧矽酸盐矿物的零电点在2~9之间,这个性质有利于它们的分选提纯。 化学组分 红柱石是无水矽酸盐,属于兰晶石族。其化学式为Al 2 O 3 ·SiO 2 或Al 2 O[SiO 4 ]。 理论化学组分 Al 2 O 3 63.1%,SiO 2 36.9%,但是由于成矿结晶、蚀变、风化等原因,晶格中常含有Ag、Fe、Ti等一些杂质,致使化学分析结果偏离理论值。 光学性质 薄片中无色,微带粉色,颜色分布不均匀。 红柱石 二轴晶。Np=1.629-1.640,Nm=1.633-1.644,Np=1.639-1.651。2V=-86°。 弱多色性:Np-淡红,Nm、Ng-淡绿。 工艺特性 工业上利用红柱石,主要是取其耐高温的特性。红柱石在常压下加热至1350℃以后,开始转化成与原晶体平行的针状莫来石。莫来石晶体是铝矽酸盐在高温作用下唯一稳定的形式,其理论转化率为87.64%。 红柱石在加热转化成莫来石的过程中,可以形成良好的莫来石网路,体积膨胀约4%。这是一种不可逆的晶体转化,一经转化,则具有更高的耐火性能。耐火度可达1800℃以上,且耐骤冷骤热、机械强度大、抗热冲击力强、抗渣性强、荷重转化点高,并具有极高的化学稳定性(甚至不溶于氢氟酸)和极强的抗化学腐蚀性。 主要用途 鉴于红柱石具有的物化性能,是已知的优质耐火材料之一。它除用作冶炼工业的高级耐火材料,技术陶瓷工业的原料以外。还可冶炼高强度轻质矽铝合金,制作金属纤维以及超音速飞机和宇宙飞船的导向型之用。据报导,国外尚利用富铝红柱石进行煤的气化和制作雷达天线罩。一部分结晶良好、色泽鲜艳的也可制作工艺品和装饰品。从七十年代开始,红柱石已广为我国工业生产所重视,其套用领域也在迅速扩大。红柱石经过煅烧后形成的莫来石具有很高的耐火度、化学稳定性和机械强度,因此在冶金、建材及其他工业部门得到广泛套用。 作耐火材料 这对提高高温操作等冶金工艺有着特殊的效益。不定形耐火材料不经烧成而直接利用,可节约燃料能源,而它在高温 *** 积稳定,则对其使用寿命影响很大。实践中,若烧注料和可塑胶按配比使用时,会含有一定量的粘土和无机物结合剂,因而造成不定形耐火材料高温和冷却过程中收缩,出现裂缝和剥落,缩短耐火材料的使用寿命。为了控制和减少耐火材料制品在长期高温下收缩,若在配料中加入定量的红柱石,利用膨胀稳定的特性,就可消除不定形材料的上述收缩小现象,延长材料的使用寿命可达五年之久。 耐火砖 红柱石煅烧后制成型材,可用于热风炉、热风塔、再热炒等关键部位。也可用于各种辅助性浇注和操作设备,还可以制作窑炉设施、高温铝矽酸盐绝缘体、翻砂模面料。使用红柱石制成的耐火纤维作炉衬,比之耐火土或轻质砖炉衬可节能30~50%。利用红柱石耐火砖除可减少燃料消耗,增加稳定性外,还可节约40%以上一般耐火材料的消耗。 生产矽铝合金、氧化铝和铝金属的原料:因红柱石Al 2 O 3 含量高,铁、钛和钙等氧化物杂质含量低,用于生产含铝60%的矽铝合金时,可以不用氧化铝,即可简化生产程式又可提高生产工效。 利用方法 国内于1978年开始红柱石的勘探工作,并陆续进行红柱石选矿试验室探索工作,这些工作的特点是:未按耐火材料制品的要求,对红柱石精矿粒度的组成,(粗粒构成骨架细粒为填料)考虑选别流程。都是采用磁选——浮选。磁选——重选——浮选等联合选别流程。原矿含红柱石10-18%左右,所获得的红柱石精矿含Al 2 O 3 55-57%左右,红柱石矿物回收率60%左右。采用的选矿设备均为国内80年代中期生产的设备。在国外南非是世界上最大的红柱石生产和出口国。 红柱石 南非各地采用的选别流程基本上大同小异,在流程中均采用重介质旋流器预先富集,然后采用强磁选来把关,这是南非生产红柱石有效的选矿方法,最终可获得含Al 2 O 3 ≥58%,Fe 2 O 3 ≤0.9%的红柱石精矿。 法国红柱石呈细粒嵌布。先将矿石磨至1.6mm用磁选法排除磁性物,使红柱石得到富集,再采用重介质旋流器两次提纯,可获得红柱石精矿含Al 2 O 3 58%,Fe 2 O 3 1.0%。 法国达姆瑞查公司于1987年首推新浮选法,PH值<3.5,矿浆浓度为15~30%。用烷基磺酸盐作捕收剂浮出红柱石矿,从而选出最高标准的红柱石精矿——KF级。含Al 2 O 3 60%,Fe 2 O 3 0.6%。该法于1989年申请欧洲专利。 质量标准 有用元素及主要伴生元素对原料的影响 红柱石虽然具有与兰晶石、矽线石相同的化学分子式,但其晶格中往往含有氧化铁和氧化锰,颜色呈灰色、黄色。如含锰变体则呈深绿色,称之为锰红柱石。红柱石结晶构造是兰晶石到矽线石的过渡情况。其存在于泥质及碳——泥质页岩中,与石英、石榴石、刚玉、兰晶石、云母、褐铁矿、赤锰矿、金红石,黄铁矿等其他矿物共生。 根据矿石形态及矿物成分,红柱石分为片岩及角岩两种类型。片岩型红柱石矿石中红柱石与石榴石、十字石及石英集块构成斑晶。基质主要由云母、细砂粒状石英及炭、泥、铁质物构成。矿石呈片状及泥质片状构造。角岩型红柱石矿石为黑云母,石英闪长岩热液作用变质而成。红柱石与绿泥石、云母、炭质组成斑晶。基质由石英、白云母、绢云母、黑云母、斜长石组成,呈泥质岩屑集合体,并具弱磁性。其次为少量的单体石英、长石、电气石、锆石、金红石、磷灰石、褐铁矿等。 红柱石 红柱石晶体内部往往含有较多的炭质、泥质包裹体而成为空晶石,并使红柱石颜色变黑。鉴于此,对于红柱石赋存粒度较大的红柱石矿石,由于红柱石单矿物表面所粘附的杂质相对对单体红柱石重量不大,因而容易得到含Al 2 O 3 较高的红柱石精矿产品。反之,如红柱石赋存粒度细小,则必须细磨,除去占矿物重量相当部分、表面粘附的杂质,方能获得合格的最终精矿。因此,红柱石矿石中红柱石晶体大小乃是影响选别难易程度及流程结构极为重要的因素。脉石矿物赋存状态也是影响选矿工艺及选别指标的另一重要因素。长石、泥质粘土矿物、石英、褐铁矿、黑云母相互胶结,成岩屑状态后,并具弱磁性,使之能用磁选予以选出。岩屑中Fe 2 O 3 成分主要为黑云母带入,岩屑中黑云母含量较多,比磁化系数愈大,愈易被磁选选出。 国家标准 中华人民共和国行业标准YB4032-91: (1)本标准规定了红柱石精矿的分类、代号、牌号、技术要求、试验方法、检验规则、包装和质量证明书。本标准适用于经选矿所获得的红柱石精矿,供高级耐火材料、技术陶瓷和矽铝合金等用。 (2)引用标准:GB2007散装矿产品取样,制样通则。GB5689冶金矿产品包装、标志和质量证明书的一般规定。GB6900粘土、高铝质耐火材料化学分析方法。GB7322耐火材料耐火度试验方法。GB8923.7致密耐火浇注料线热膨胀试验方法。 (3)分类、代号、牌号:红柱石精矿——以“红”和“精”二个汉语拼音字母的大写字头“HJ”为代号。按Al 2 O 3 含量红柱石精矿分为HJ-58,HJ-55,HJ-52三个牌号。 (4)技术要求:产品粒度由供需双方商定,产品不得混入外来夹杂物,产品理化指标。 发展趋势 地球上红柱石储量集中在南非、法国和中国。西班牙、葡萄牙、俄罗斯、加纳、韩国、美国的加利福尼亚和北卡罗来纳也有一定的储量。世界可供商业出口的红柱石生产基本限于南非,年产量约25万吨。南非产品一半左右出口到欧洲。法国的达姆莱克公司有一个矿,年产6.5万吨,前不久达姆莱克接管了安尼斯雷红柱石。 红柱石 红柱石耐火材料及库里南矿物三家公司。安尼斯雷经营点位于伯格斯费特,年生产能力6万吨。产品有两个等级:1~4mm和3~8mm,产品Al 2 O 3 含量高的达59%,全部用于耐火材料。出口到美国、日本、澳大利亚和欧洲。前库里南经营地点是雷登伯格,年生产能力5万吨,产品牌号为K55和K57P,含Al 2 O 3 分别为55%和57%。原料出口到欧洲和远东,主要发往英国、德国、西班牙和义大利。其位于格鲁特马里科的安莱夫安德拉法克斯产品主供出口,主要市场是日本、欧洲和美国。 安格罗瓦尔集团的子公司利诺红柱石公司在南非经营最大一个矿。该矿位于穆普马兰格北部的塔巴基姆比附近,产量达生产能力的12万吨左右,其中有6~7万吨出口,85%从理察湾发运,剩下的装袋从杜班发出。后者90%左右是作为研磨品售出的。大约每年有5万吨售予国内市场,其中大部分消费于钢铁业用作耐火材料。销售是世界性的,出口主要是东欧和东南亚。矿点加工的数量不大,各种专用级别产品大量由加工厂生产。 红柱石 赫尔尼克勘探公司在获得霍根诺伊格红柱石公司资产之后将开始红柱石业务。此举将使赫尔尼克年生产能力达到3.6万吨左右,生产地点在皮特斯伯格——伯格斯特一带。另外,赫尔尼克还在继续开发格鲁特马里科地区红柱石年生产能力2万吨。法国达姆莱克集团的露天矿位于布里坦尼的格罗梅尔,年处理红柱石原矿60万吨。年产精矿6.5~7万吨。产品供给耐火材料业,品牌为“Kerphalite”,有不同含量的Al 2 O 3 品级。 中国在河南和山东年产约8000吨红柱石,其中5500吨出口。中国矿物含Fe 2 O 3 量较高,约为1.5%。新港离岸价大体为300美元/吨。现影响出口成本的主要原因是没有形成大规模生产。

钻石是以矿物金刚石为材料的宝石,即是在大小、颜色、净度等方面达到宝石学要求的金刚石。钻石的英文名称为diamond,起源于希腊语adams,有“坚硬无比”之意。钻石是自然界最硬的物质,它能刻划所有物质,可谓无坚不摧,因此,钻石坚硬耐久。

除此之外,钻石是世界上透明物质中折射率最高的少数几种材料之一,因此,钻石反射光的能力很强,具有典型的金刚光泽。而且,钻石按科学设计的款式切磨,能把表面以及入射到内部的光全部反射出来,使整个钻石闪烁着耀眼的光芒。钻石的色散很大,即对不同波长的单色光,折射率的差别也很大。当白光射入切磨好的钻石中时,因白光中不同波长的单色光折射率不同,将使不同颜色的单色光分开,经多次内部反射透出钻石时,其分开的程度会更大。这种色散现象使钻石呈现五颜六色的闪光,即火彩,显得异常美丽迷人。钻石十分稀少,即便是南非产钻石的富矿,平均也要大约开采20吨矿石,才能获得1克拉宝石级钻石。钻石之所以如此珍贵、如此具有魅力,由此可见一斑。钻石有着“宝石之王”的美誉。围绕钻石的阴谋、战争、冒险故事和传说流传不断,是其他任何宝石都无法比拟的。

一、基本性质

(一)结晶学性质

晶系 等轴晶系。

结晶习性 常为八面体、菱形十二面体和立方体等,还有几种单形组成的聚形 (图6-1)。

表面特征 由于钻石晶体发育三个方向完全的八面体解理,因此在表面具有明显的解理纹,成为鉴定钻石原石重要的依据。

图6-1 等轴晶系晶体几何外形

(二)化学成分

钻石为单质矿物,化学分子式为C。C原子之间以共价键相联结,其结合十分牢固,因此钻石具有高硬度、高熔点、高绝缘性和强化学稳定性等特征。除C外,钻石还可能含N、B等微量成分,并据此将钻石分为两种类型,即Ⅰ型和Ⅱ型。

Ⅰ型钻石 含微量N。按N 的存在形式进一步分为Ⅰa 型和Ⅰb 型。

Ⅰa型:N以原子对或N3 为中心,其含量越多,钻石越黄。在自然界中,大部钻石属于此类。

Ⅰb型:N以单原子形式出现,在自然界中少见。这种钻石的颜色为黄、黄绿和褐色。

Ⅱ型钻石 不含N,这种钻石导热性很好,在自然界少见。按含 B 与否及导电性可进一步分为Ⅱa型和Ⅱb型。

Ⅱa型:不含B,不导电,具最高的导热率,室温下导热率是铜的6.5倍。

Ⅱb型:因含微量B而成为电的半导体,颜色多为蓝色。

钻石的化学稳定性较高。但在CrSiO4 中加热至200℃,可使之变成CO2,在氧化环境中加热至650~870℃,也可使之变成CO2。

(三)物理性质

1.光学性质

颜色 变化大,常为无色、黄、黑等;少量为绿、红、蓝等色。

光泽 为典型的金刚光泽。

透明度 透明 不透明。

光性 为各向同性,因此,在偏光镜下为全消光,但钻石常受构造作用影响发生晶格畸变,因而有些钻石在偏光镜下可显异常消光。

折射率 2.417~2.419;无双折射。

色散 0.044,较高,因此,钻石具较高的火彩。

多色性 无。

发光性 在强度和颜色上均有较大变化。无色及黄色钻石多数呈蓝-白色,约有1/15的钻石在紫外光下发荧光;棕色及绿色钻石常见绿色荧光。

吸收光谱 不同颜色的钻石具有不同的吸收光谱。无色 黄色钻石在478nm、465nm、451nm、435nm、402nm、423nm、416nm、390nm处具有吸收线。蓝 绿色钻石在537nm、504nm、498nm处具有吸收线。

2.力学性质

解理 具有三个方向完全的八面体解理。所以抛光钻石在腰部常见 V 字形缺 (破)口,该性质是鉴别钻石与其仿制品的重要特征之一。加工时劈开钻石正是利用这一特性(图6-2)。

图6-2 利用钻石的解理劈开钻石

硬度 钻石为自然界中最硬的物质,摩氏硬度为10,刻划硬度为刚玉的140多倍。钻石的硬度具有各向异性的特征,不同方向硬度不同:八面体方向>菱形十二面体方向>立方体方向的硬度。此外,无色透明钻石硬度比彩色钻石硬度略高。切磨钻石是利用钻石较硬的方向去磨另一颗钻石较软的方向,只有用钻石才能磨动钻石。虽然钻石是自然界中最硬的物质,但其解理发育、性脆,所以在成品钻石的鉴定中,一般禁止进行硬度测试,以免造成不可挽回的损失。

密度 3.52g/cm3。

3.其他物理性质

热膨胀性 热膨胀性非常低,因此,温度的突然变化对钻石的影响极小。无裂隙或无包裹体的钻石,在真空加热至1800℃而后快速冷却,不会给钻石带来任何损害。但在氧气中加热,则只需达到较低的温度(650℃),钻石即缓慢燃烧而变为CO2 气体。激光打孔和切磨便是利用这一原理。

导热性 是所有已知物质中最高的。利用这一性质制成的热导仪成为钻石检测中最快捷有效的工具,这一性质也使钻石在电子工业中被用作散热片和测温热感应器件等。

电学性质 除少数罕见的天然蓝色钻石 (Ⅱb 型) 外,一般是绝缘体。钻石越纯净,其晶格越完美,其电绝缘性就越好。若钻石被X射线或γ射线辐射,其结构将被破坏并产生一些自由电子,由此产生极小的电导率。

亲油性 钻石表面不能被水湿润,但具特殊的亲油性。这一特性常被用于钻石鉴定和选矿中。

(四)包裹体

钻石内部的包裹体除金刚石外,还有石墨、石榴子石、单斜辉石、斜方辉石、硫化物、橄榄石、蓝晶石、刚玉、红柱石、方解石、云母、长石、角闪石、钛铁矿、铬透辉石、绿泥石、锆石、透辉石等。此外,放大观察还可见钻石的生长纹、解理等。在原石和成品上还常见与解理有关的三角座、“V”字形缺口、胡须等。

二、鉴定

钻石的鉴定非常重要,因为钻石评价、贸易、市场营销、购买等必须首先以钻石的准确鉴定为前提。随着科学技术的发展,越来越多的钻石仿制品不断进入市场,如苏联钻(立方氧化锆)、美国钻(钇铝榴石)、瑞士钻(钛酸锶)、莫桑石等。许多材料按比例切磨加工,会显示出与钻石同等甚至更高的亮度和火彩,完全可鱼目混珠。更为严重的是:越来越多的合成钻石、新方法处理钻石不断进入市场,对它们的正确鉴定,即使是专业的珠宝鉴定师,有时也会感到困惑。钻石的准确鉴定需要专业人员借助各种鉴定仪器才能完成。但一般来讲,钻石鉴别需重点解决下列的问题:①钻石与仿制品的鉴别;②天然钻石与合成钻石的鉴别;③未处理钻石与处理钻石的鉴别。

(一)钻石与仿制品的鉴别

市场上钻石的仿制品很多,典型的有钇铝榴石、钆镓榴石、锆石、立方氧化锆、钛酸锶、合成金红石、合成碳硅石(莫桑石)、玻璃等。但和其他宝石相比,钻石与仿制品的真假鉴别相对较容易(表6-1),最方便的方法是借助于热导率仪就能将钻石与其他仿制品区别开来,因为除莫桑石外,所有钻石仿制品的热导率都远比钻石低。在此基础上,重点解决莫桑石的鉴别问题即可。

表6-1 钻石及其仿制品的物理性质

续表

莫桑石是1997年由美国C3公司生产并投放到市场的一种人造宝石,其化学成分是SiC。与其他钻石仿制品相比,它具有更大的欺骗性,原因在于其热导率较高,用传统的热导仪无法将它与钻石区分开来。其实,这种仿制品的鉴别并不太难,第一,这种材料是非均质体,并具有较大的双折射,用十倍放大镜便可将此区分开来;第二,利用已投入市场的反射率仪等,很容易将两者区别开来。

(二)天然钻石与合成钻石的鉴别

自从40多年前第一粒合成钻石问世以来,合成钻石的技术一直不完善,多数合成金刚石只具有工业用途,达到宝石级的很少,而且合成钻石成本比开采天然钻石昂贵,所以过去合成钻石很少流入市场,人们似乎高枕无忧,看到钻石理所当然地认为是天然的。但是近十多年,随着合成技术的不断提高,成本随之降低,产量成倍增长,品质越来越好,近无色干净者处处可见。合成钻石已开始冲击市场,当务之急是如何鉴别它们。基于现在的研究成果,天然钻石与合成钻石的鉴别可依据一些明显的特征综合对其作出鉴定(表6-2)。

表6-2 天然钻石与合成钻石的区别

(三)天然钻石与处理钻石的鉴别

由于客观原因,大多数天然产出的钻石均带有这样或那样的缺陷,有的甚至不能直接切磨成成品。为此,人们一直在努力将低级别钻石通过一系列方法进行处理,使其外观得到改善,使其质量明显提高,并最大限度地实现其价值。处理钻石的鉴别也就随之成为钻石鉴定中一个十分重要的方面。常见的钻石处理方法及其成品鉴别方法如下:

1.激光处理

该方法是用激光消除钻石中的明显黑点、包裹体等,激光留下的通道用玻璃来充填。鉴定这种方法处理的钻石时,其中白色线状包裹体是其重要依据。

2.辐射和加热处理

某些颜色较差的钻石可用辐射和热处理的方法使其颜色得到改善。对它作出正确鉴别需专门知识和仪器。残余放射性以及因辐射而产生的特殊颜色图案是最重要的鉴别标志。对辐射而产生的蓝色钻石,不导电是鉴别的重要依据。

3.涂色处理

某些稍带黄色的钻石可在腰棱或亭部小面涂上蓝色而使黄色消退。鉴别的办法是先用清水或丙酮擦后再作检查。

4.镀层处理

即在钻石上用合成金刚石方法镀上一薄层,它可增加重量,改善净度或成色。鉴别的办法是:放大检查或用浸液检查,镀层较易显现出来。

5.拼合处理

钻石拼合处理常见有下列三种情况:①以合成无色蓝宝石作冠部粘合到钛酸锶的亭部上。用蓝宝石作冠部以保证硬度,用钛酸锶作亭部以提高火彩。这种拼合石可用热导仪来鉴别。②以钻石作冠,粘合到其他无色透明的材料上。冠部的钻石薄层以保证拼合石的光泽和硬度。这种拼合只测试冠部难以确定真假,必须测定亭部才能作出正确鉴别。③两颗较小的钻石粘合起来形成较大的钻石。这种拼合用热导仪不能作出鉴定,必须观察其拼合缝中存在的胶和气泡等特征。

三、质量评价

钻石的价格与钻石的品质息息相关。同样都是天然钻石,因品质的细微差别就会引起钻石价格的较大波动,可以说钻石是日常生活中价格差别最大的商品之一。其实,目前珠宝市场上,经常引起纠纷的往往不是在于钻石的真假与否,而绝大多数在于钻石品质的分歧上。由于大家希望所购钻石物有所值,由此希望制定一个统一的标准来对钻石的品质进行分级。经过国际钻石业的努力,已制定出一个目前在国际上较为统一的公认的钻石品质评价标准,它们是:克拉重量(carat weight)、颜色(color)、净度(clarity)和切工(cut)。由于这4个评价标准的英文字母均以“C”开头,所以行业中习惯将此称为“4C”标准。

(一)克拉重量(carat weight)

1.重量的表示

克拉 (carat) 公制克拉是表示钻石重量最常用的单位,常简称为克拉,习惯上克拉缩写成“ct”。在宝石学中,1ct=0.2g=200mg。

分 (point) 对于不足1ct 的钻石,其重量常用分来表示,通常写成 pt。宝石学规定1ct的1/100为1pt,即1ct=100pt。

格令(grains) 25pt称1格令。这个单位用来表示钻石的近似重量,例如1/2ct的钻石称大约2格令等。

每克拉多少颗 对于小的钻石,行业中习惯不说其重多少克拉或多少分,而是用每克拉有多少颗表示。例如一包钻石共有50颗,大小近乎一致,总重量1ct,在描述这批钻石时说“50颗/克拉”,而不说每颗2pt,因为每颗小钻石的重量不可能完全相同。

2.钻石的称重

对于未镶钻石,其重量可用天平精确称得。但天平有许多种,每种天平的精度存在差异,因此,我们在使用天平时,还是要十分注意天平的精度。不过目前宝石行业中使用的专门电子克拉天平,其精度可达到0.001ct,完全能满足要求。对于已镶的钻石,其重量的精确测定就存在困难了。一般的做法是根据其大小尺寸,对其作出初步的估算。其中关键在于钻石切割精度,精度越高,其重量估算就越精确,反之,则可能存在较大误差。常用的计算公式如下:

标准圆钻 重量=平均直径 2 ×高度×0.0061

椭圆钻 重量=平均直径 2 ×高度×0.0062

心形钻 重量=长×宽×高×0.0059(长︰宽)

祖母绿形钻 重量=长×宽×高×0.0080(1.00︰1.00)

×0.0092(1.50︰1.00)

×0.0100(2.00︰1.00)

×0.0106(2.50︰1.00)

马眼形钻 重量=长×宽×高×0.00565(1.50︰1.00)

×0.00580(2.00︰1.00)

×0.0585(2.50︰1.00)

×0.00595(3.00︰1.00)

梨形 重量=长×宽×高×0.00615(1.25︰1.00)

×0.00600(1.50︰1.00)

×0.00590(1.66︰1.00)

×0.00575(2.00︰1.00)

上述长度、宽度和高度等可用各种量具、卡规等测量,单位是毫米(mm)。钻石的重量单位是克拉(ct)。

3.克拉重量与价格

对于成品钻而言,在其他条件(颜色、净度和切工)都相同的情况下,重量越大,其价格越高。在钻石行业中,钻石的价格是用“每克拉多少价”(price per carat)来表示。通常缩写成P.C.。例如,价格是¥22000元/ct,一颗重0.50ct的钻石,那么,其售价就为0.50×22000=11000(元)。

由于自然界越大的钻石越稀少,同时,社会上广泛存在拥有1ct、2ct、3ct的钻石比拥有稍小于1ct、2ct、3ct整数钻石更加感到荣幸的心理。这两种因素被清楚地反映在每颗钻石价格报价上。因而,市场上钻石价格与克拉重量之间并不是简单的线性关系,而是一条在克拉溢价处出现台阶的线(图6-3)。

图6-3 钻石价格与重量的关系示意图

溢价台阶还出现在0.25ct、0.50ct和0.75ct重量处,更大的则出现在1、2、3等整克拉处

(二)颜色(color)

1.钻石颜色的等级特征

基于行业习惯,钻石根据颜色可划分为两个系列,一个是带颜色的异彩钻石系列(fancy colour diamonds),如红色、蓝色、紫色和棕色等。这个系列的钻石在自然界非常稀少,故在价值上也较高,评价需单独进行。另一个是数量相当大的无色系列,这个系列的钻石要求越是无色,价值越高。但由钻石中或多或少含少量氮等杂质元素,因而或多或少带黄色调。为了评价这个系列的钻石,国际上提出了许多分级体系。目前世界上主要的钻石分级体系是GIA和CIBJO的分级体系。GIA的分级体系是一英文字母体系,这一体系从最好颜色D开始,终结于Z。CIBJO分级体系则用简单的术语来描述色级。中国传统的钻石分级体系则采用100制的方法,即将最好的颜色定为100,其他依次类推。

2.颜色分级的实践

钻石的成色分级一般要求有以下4个基本条件,即一套标准比色石、合适的灯源、中性的分级环境以及经验。

标准比色石 每一个实验室应有一套共7颗的比色钻石,称为标准 “比色石”(master stones)。其中的每一颗钻石都代表一种标准“颜色”,对应于一个色级的下限或上限。将一颗未知钻石的颜色与某一比色石相比,即能得到该钻石的颜色色级。需要注意的是,一个色级代表着一个颜色范围,许多被评为同一色级的钻石,经仔细观察,其色调仍有细微差异。

合适的光源 在颜色分级时,需要一种标准的、无紫外线的人造光源。钻石颜色分级中推荐使用的光源是5000/5500K,这种光源是在相对于绝对零度(-273℃)温度下产生的。

中性的分级环境 分级的环境也会影响到对钻石颜色的感觉。来自非标准屋顶灯的散射光和从四周窗户进来的日光都会使钻石发荧光,另外,如墙壁及顶棚的颜色色调比较鲜艳,也会妨碍眼睛观察并影响分级,要求有一个中性的分级环境,在黑暗房间中使用标准光源是最理想的,或是一间半暗的房间,其墙壁和顶棚为中性淡色。

经验 钻石分级要求有经验丰富的钻石分级师,掌握各种分级标准,准确地为钻石分级。

3.成色分级步骤

成色分级一般采用比色法,即将待评价钻石与标准的比色样石进行比较,以决定待比未知样品的成色级别。

4.颜色与价格

钻石的颜色对其价格影响较大。在其他条件(重量、净度和切工)相同的情况下,颜色级别越高,其价格越高。例如,1998年的国际报价,重量为1ct、净度为VS、切工相同,成色为D的钻石价格约为15000美元/ct,颜色为K的钻石,价格约为5000美元/ct,相差近3倍。

(三)净度(clarity)

1.净度的分级体系

目前世界各国流行的钻石净度分级体系主要依据钻石内部及外部瑕疵的多少。钻石净度分级在国际上有统一的名称、标志及颜色。外部瑕疵统一用绿色笔标识,主要有多余刻面、原晶面、伤痕、小白点、磨痕、磨痕等。内部瑕疵特征统一用红色笔标识,主要有毛边、碎伤、破洞、缺口、云状物、羽状裂纹、结晶包裹体、内部生长线等。

2.净度分级的必要条件

清洁 由于钻石具有亲油性,在检测前至关重要的是将所有的油脂和脏物从钻石表面清除掉,否则将影响评价结果;

放大倍数 对净度分级,国际上约定采用经过校正的10倍放大镜;

照明 要求有尽可能多的光进入钻石亭部。

3.净度分级的步骤

首先,每个小面逐一检查;然后确定净度的级别。需要考虑的主要因素如下:

包裹体数量 包裹体的数量越多,净度级别越低。

包裹体大小 包裹体越大,钻石的亮度越低,净度级别越低。

包裹体位置 包裹体所在位置越靠中部,对净度的影响越大。

包裹体明亮度 包裹体越暗,其清晰度越高,因而净度级别越低。

包裹体类型 若别的因素相同,那么,具有相似大小和位置的模糊的云雾比暗色晶体对净度的影响小。

(四)切工(cut)

为了最大限度地体现钻石的美,按理想比例精确加工十分重要。钻石的各个部分都要求有一定的比例。圆多面型钻石切工分级的评价指标有:台面百分比、冠部角度、亭部深度百分比、腰部厚度、尖底大小尺寸、修饰(指抛光程度和对称程度)度等。具体内容如下:

台面大小的估计 台面宽度约占整个腰直径的56%。

冠角 在理想琢型中,有三种琢型其冠角大致都在33°~34°30′之间。

冠部高度 约占腰部直径的14.4%。在评价切工时,一般不单独评价冠部高度,它主要受台面大小和冠角的控制。

腰棱厚度 几乎所有的圆多面型钻石的腰棱厚度变化都是有16处最厚16处最薄,这取决于做工的对称性。沿着钻石的腰棱线观察,可以很容易地观察到波浪形腰棱。

亭部深度 亭部深度一般约为腰部直径的43%。

底面 一般50分以上的钻石,底部都要求有小面,这种钻石共有58个面。底面只是一个非常小的面,要求位置正。若底面偏离中心,会造成部分漏光的现象。

切工的好坏对价格影响极大,美国A.L.Matlins (1999)认为,切工是4C中对钻石价格影响最大的,而我国钻石消费者对此往往不太重视,因此一些珠宝商往往将成色和净度尚好,但切工低劣的钻石销售给消费者,并由此给消费者带来损失,应引起高度重视。

四、矿床成因及产地

1.矿床成因

构成钻石的矿物金刚石是如何形成的?至今仍存在争议。到目前为止,已提出的相关假说有:地幔捕获晶成因说、幔源岩浆结晶说、陨石冲击成因说、油储爆破成因说和变质成因说等。地球科学结合现代科学实验研究表明,上述形成金刚石假说均可能是正确的,但达到宝石级的金刚石——钻石只产于金伯利岩、钾镁煌斑岩两种类型原生矿以及它们的次生砂岩之中。

根据对所含包裹体的研究,钻石的形成温度为900~1300℃,压力为4.5~6.0GPa,相当于地球深处130~180km的深度。根据包裹体测年分析,钻石的形成年代通常比携带它至地表的金伯利岩或钾镁煌斑岩的年代要早得多,如南非金伯利钻石矿,金伯利岩形成于距今90~100Ma,而该矿床中的钻石却形成于3300Ma前。世界各地的钻石矿均具有相同的特征,因此,可以认为钻石是在较古老的地质历史时期形成于地幔深处,在后期火山活动中,被金伯利岩浆或钾镁煌斑岩岩浆捕获,被带至地表,并赋存在金伯利岩和钾镁煌斑岩中,形成钻石原生矿。原生矿经过风化剥蚀作用,钻石被带至河流或滨海环境沉积下来,则形成钻石的次生砂矿。到1871年为止,全球所有的钻石均发现于次生砂矿,至今次生砂矿仍是世界钻石的主要来源。第一个钻石原生矿于1870年发现于南非的金伯利城,以后相继在博茨瓦纳、刚果(金)、澳大利亚、俄罗斯、巴西和中国等发现金伯利岩型或钾镁煌斑岩型原生钻石矿床。

2.产地

到18世纪为止,除了少数钻石开采自婆罗洲外,大部分钻石开采自印度,包括历史上几乎所有的名钻。南美大陆的巴西于1725年发现钻石,此后一百多年的历史中,巴西的钻石产量居世界首位,这一格局直到19世纪末期才被南非钻石的大量发现所打破(周祖翼等,2001)。

1866年,在南非Orange附近,人们发现了第一颗“尤利卡”钻石,成千上万的人因此涌到此处淘沙寻找钻石。逆河而上,历经4年之久,人们终于在金伯利城旁的Dutoits⁃pan岩筒中发现产钻石的母岩——一种蓝绿色的喷出岩,并命名其为金伯利岩。今天,人们在南部非洲找到了成千上万个金伯利岩筒,但大多数并不含钻石,或虽有钻石产出,但由于品位太低而无开采的工业价值。著名的南非钻石矿有金伯利矿和普列米尔矿等。其他如刚果(金)、博茨瓦纳、俄罗斯西伯利亚雅库特、坦桑尼亚的姆瓦杜伊和我国辽宁的瓦房店等,都是十分典型的金伯利岩型钻石矿床产地。

1979年在澳大利亚发现了含金刚石的钾镁斑岩,又称超钾金云火山岩,这是一种新的金刚石产出类型。这种类型是后期的岩浆岩侵入到早期的火山岩中,使侵入岩与火山岩紧密共生。钾镁煌斑岩属铁质、偏碱性至强碱性基性-超基性岩。澳大利亚的煌斑岩岩管不仅为寻找新的金刚石资源提供了基础资料,而且是红钻的重要产地。为了避免坠石的危险,今天金伯利岩筒钻石的开采已从露天开采转为地下开采。钻石的回收则采用了一系列特殊的分选工艺和设备,如回旋破碎机、碾磨机、重介质分选法、旋转淘洗盘、油脂回收、磁选、X射线分选机等。各金伯利岩筒的钻石品位变化不等,一般每2吨含钻石金伯利岩产出1克拉钻石,在某些岩筒,每吨矿石提取0.2克拉钻石即具开采价值。金刚石砂矿是世界上金刚石的主要来源。世界各国砂矿中金刚石储量约占世界金刚石总量的40%,但约占总产量的60%。金刚石砂矿包括滨海砂矿、河流冲积砂矿和残坡积砂矿,分布在寒武纪、晚古生代、中生代和新生代等各个地质历史时期。著名的南非维特瓦特斯兰德含金刚石砾岩、南非普列米尔和博茨瓦纳的奥拉帕岩筒上的残积砂矿,都是金刚石砂矿的重要产地。我国湖南沅江流域两侧也发现有工业价值的金刚石砂矿分布。金刚石砂矿的开采除了采用传统的淘沙方法外,主要的方法和工具有船上回收(挖泥船)、吸扬式挖泥船、河流改道、海上开采等。

目前在世界上进行商业性生产钻石的国家有20多个,但产量居前五位的钻石生产国依次是澳大利亚、刚果(金)、博茨瓦纳、俄罗斯、南非。其他生产钻石的国家有安哥拉、巴西、中国、科特迪瓦、加纳、几内亚、圭亚纳、印度尼西亚、利比亚、莱索托、纳米比亚、坦桑尼亚、委内瑞拉、中非共和国、塞拉里昂、印度、美国等。中国于1965年先后在贵州和山东找到了金伯利岩和钻石原生矿床。1971年辽宁瓦房店找到钻石原生矿床。目前仍在开采的两个钻石原生矿床分布于辽宁瓦房店和鲁中蒙阴地区。钻石砂矿则见于湖南沅江流域、西藏、广西以及跨苏皖两省的郯庐断裂等地。

【学习指导】 钻石被称为宝石之王,是国际珠宝市场占有率最高的宝石品种。本任务中有关钻石的基本性质(包括结晶学性质、化学成分、物理性质和包裹体特征等)必须熟记。钻石鉴定重点需要掌握三个方面的内容:一是钻石与仿制品的鉴别;二是天然钻石与合成钻石的鉴定;三是未处理钻石与处理钻石的鉴别。钻石质量主要掌握4C评价标准和有关方法。对于钻石与金刚石的关系、钻石的成因及产地等也必须有充分的了解。

【练习与思考】

1.何为钻石?钻石与金刚石的关系如何?钻石为何被称为宝石之王?

2.钻石的基本性质是什么?

3.何为Ⅰ型钻石?何为Ⅱ型钻石?确定的依据是什么?

4.简述钻石为何硬度是自然物质中最大的,但韧度并不是最高的原因。

5.钻石的热导率是自然物质中最高的,它的具体用途是什么?

6.简述如何充分应用钻石三个方向完全的解理特性。

7.何为钻石的4C评价?具体包括哪些内容?

8.钻石的鉴别主要解决哪些问题?

9.克拉重量如何表示?如何称重?钻石重量与价格的关系如何?

10.如何大致确定钻石的颜色?钻石颜色分级的条件是什么?

11.净度有哪些分级体系?其适用性如何?净度分级的条件是什么?

12.确定钻石净度主要考虑哪些因素?

13.对于十分常见的圆多面型切工钻石而言,评价其切工好坏的主要指标有哪些?

14.钻石的主要仿制品有哪些?如何鉴别它们?

15.处理钻石和合成钻石如何鉴别?

16.钻石拼合石有哪几种情况?如何鉴定钻石拼合石?

17.何为莫桑石?它给钻石市场带来的影响是什么?

18.简述钻石的成因,说明目前国际主要的钻石产地。

以上就是关于中华人民共和国行业标准YB4032-91电子版,是关于富铝红柱石的行业标准,请发邮箱village24@sina.com 谢谢全部的内容,如果了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

 
举报收藏 0打赏 0评论 0
 
更多>同类百科头条
推荐图文
推荐百科头条
最新发布
点击排行
推荐产品
网站首页  |  公司简介  |  意见建议  |  法律申明  |  隐私政策  |  广告投放  |  如何免费信息发布?  |  如何开通福步贸易网VIP?  |  VIP会员能享受到什么服务?  |  怎样让客户第一时间找到您的商铺?  |  如何推荐产品到自己商铺的首页?  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  粤ICP备15082249号-2