铸造工艺设计研究目的和意义的区别

   2022-09-22 14:11:39 网络1040
核心提示:铸造工艺是研究做成产品的方法,更进一步,提升生产效率,降低成本,规范操作,保证质量,持续改进,内容涉及很多,是不可或缺的铸造力量。一般公司或工厂,铸造工艺人员应该不少于总人数的10-20%,才能持续发展铸造行业在工业中的地位如何?绿色铸造是

铸造工艺设计研究目的和意义的区别

铸造工艺是研究做成产品的方法,更进一步,提升生产效率,降低成本,规范操作,保证质量,持续改进,内容涉及很多,是不可或缺的铸造力量。

一般公司或工厂,铸造工艺人员应该不少于总人数的10-20%,才能持续发展

铸造行业在工业中的地位如何?

绿色铸造是未来铸造行业的发展趋势。随着我国国民经济的发展方式向调整优化结构、注重效益环保、提升产业层次政策的转变,铸造行业的转型跨越发展也势在必然,基于循环经济模式的绿色、环保、节能型铸造企业将是今后的发展方向。

随着近年来我国对铸造行业环保执法力度的日渐加强,迫使发热冒口厂家业开始重视环保技术,重视铸造烟尘治理、污水净化、废砂废渣利用,并开发出多种铸造环保设备,如震动落砂机除尘罩、移动式吸尘器、烟尘净化装置、污水净化循环回用系统,铸造旧砂干湿法再生技术及设备、铸造废砂炉渣废塑料制作复合材料技术和设备等。

抓紧发热冒口厂家铸造业的技术改造,努力提高铸件质量档次,生产高性能的大型机械装备用铸件是当务之急。同时,应大力宣传、推广节能降耗、绿色铸造,清洁生产。这不仅是企业节能降耗提高产品质量、减少污染、降低成本和提高效益所必需的,也是冲破工业发达国家设置的绿色壁垒,稳固地占领国际大市场的重要途径。

在绿色发展的大环境下,一些有远见的企业家主动斥巨资进行清洁生产技改和开发“绿色”铸造产品,并推行国际化企业标准,足以可见提高铸件质量,推行绿色铸造是未来铸造行业的发展趋势。

铸造行业标准

铸造行业是工业制造的基础,发展相辅相成。工业制造的需求促进压铸装备的发展,压铸装备的发展满足工业制造的从设计理念开始的实现。

所有汽车发动机的缸体都是铸造的,想想汽车工业在整个人类工业体系里的水平层次,想想每年全球民用车的销量,铸造的地位可想而知。

近年来增材制造的发力,对铸造确实造成了一些影响。但是传统铸造业也开始引入增材制造技术,铸造技术本身也在不断升级,可以说很长一段时间内,铸造的地位不会有所动摇。

我国铸造行业发展趋势

我国铸造行业目前的发展趋势虽然是在走上坡路,但较之于发达国家,国内的铸造水平、工艺、技术等还是有一定的差距,对于国民经济的快速发展形成了一定的阻碍。

专家认为,技术落后、设备陈旧、能耗和原材料消耗高、环境污染严重以及工人作业环境恶劣等问题,已经严重影响了铸造行业前进的脚步。

其一是环境污染严重、作业环境恶劣。国内多数的铸造厂生产设备陈旧、技术落后、很少会考虑到环保的问题,政府虽然对一些小规模、污染大的企业做出了调整,但铸造行业的粗放型特征没有得到本质的改变。

其二是能耗和原材料消耗高。从相关资料中可以查阅到,国内的耗约为铸造发达国家的2倍,我国需要从根源上面进行改善。

其三是工艺水平低,铸件质量差。生产出的铸件能耗和原材料消耗严重,加工周期长,生产效率低,还需要有一个质的提高。

其四是人才短缺。制约我国铸造技术发展的关键就是人才,而国内铸造行业人才缺乏的根本原因则是企业待遇低、工作环境差。

铸造是装备制造业发展的重要基础和保障

1 铸造通用基础及工艺标准规范汇编

1.1 GBT 5611-1998 铸造术语

1.1.1 基本术语1.1.2 砂型铸造1.1.3 特种铸造1.1.4 造型材料1.1.5 铸件后处理1.1.6 铸件质量1.1.7 铸造工艺设计及工艺装备1.1.8 铸造合金及熔炼、浇注

1.2 GBT 5678-1985铸造合金光谱分析取样方法

1.3 GBT 60601-1997 表面粗糙度比较样块铸造表面

1.4 GBT 6414-1999 铸件尺寸公差与机械加工余量

1.5 GBT1 1351-1989 铸件重量公差

1.6 GBT 15056-1994 铸造表面粗糙度评定方法

1.7 JBT 2435-1978 铸造工艺符号及表示方法

1.8 JBT 40221-1999 合金铸造性能测定方法

1.9 JBT 40222-1999 合金铸造性能测定方法

1.10 JBT 5105-1991 铸件模样起模斜度

1.11 JBT5106-1991 铸件模样型芯头基本尺寸

1.12 JBT 6983-1993 铸件材料消耗工艺定额计算方法

1.13 JBT7528-1994 铸件质量评定方法

1.14 JBT 7699-1995 铸造用木制模样和芯盒技术条件

2 铸铁标准规范汇编

2.1 GBT 1348-1998 球墨铸铁件

2.2 GBT 3180-1982 中锰抗磨球墨铸铁件技术条件

2.3 GBT 5612-1985 铸铁牌号表示方法

2.4 GBT 5614-1985 铸铁件热处理状态的名称、定义和代号

2.5 GBT 6296-1986 灰铸铁冲击试验方法

2.6 GBT 7216-1987 灰铸铁金相

2.7 GBT 8263-1999 抗磨白口铸铁件

2.8 GBT 8491-1987 高硅耐蚀铸铁件

2.9 GBT 9437-1988 耐热铸铁件

2.10 GBT 9439-1988 灰铸铁件

2.11 GBT 9440-1988 可锻铸铁件

2.12 GBT 9441-1988 球墨铸铁金相检验

2.13 GBT 17445-1998 铸造磨球

2.14 JBT 2122-1977 铁素体可锻铸铁金相标准

2.15 JBT 3829-1999 蠕墨铸铁金相

2.16 JBT 4403-1999 蠕墨铸铁件

2.17 JBT 5000.4-1998 重型机械通用技术条件铸铁件

2.18 JBT 7945-1999 灰铸铁力学性能试验方法

2.19 JBT 9219-1999 球墨铸铁超声声速测定方法

2.20 JBT 9220.1-1999 铸造化铁炉酸性炉渣化学分析方法总则及—般规定

2.21 JBT 9220.2-1999 铸造化铁炉酸性炉渣化学分析方法高氯酸脱水重量法测定二氧化硅量

2.22 JBT 9220.3-1999 铸造化铁炉酸性炉渣化学分析方法重铬酸钾容量法测定氧化亚铁量

2.23 JBT 9220.4-1999 铸造化铁炉酸性炉渣化学分析方法亚砷酸钠—亚硝酸钠容量法测定—氧化锰量

2.24 JBT 9220.5-1999 铸造化铁炉酸性炉渣化学分析方法氟化钠—EDTA容量法测定三氧化二铝量

2.25 JBT 9220.6-1999 铸造化铁炉酸性炉渣化学分析方法 DDTC分离EGTA容量法测定氧化钙量

2.26 JBT 9220.7-1999 铸造化铁炉酸性炉渣化学分析方法高锰酸钾容量法测定氧化钙

2.27 JBT 9220.8-1999 铸造化铁炉酸性炉渣化学分析方法DDTC分离EDTA容量法测定氧化镁

2.28 JBT 9220.9-1999 铸造化铁炉酸性炉渣化学分析方法磷矾钼黄—甲基异丁基甲酮萃取光度法测定五氧化二磷量

2.29 JBT 9220.10-1999 铸造化铁炉酸性炉渣化学分析方法硫酸钡重量法测定硫量

2.30 JBT9220.11-1999 铸造化铁炉酸性炉渣化学分析方法燃烧—碘酸钾容量法测定硫量

2.31 JBT 9228-1999球墨铸铁用球化剂

3 铸钢标准规范汇编

3.1 GBT 2100-2002 —般用途耐蚀钢铸件

3.2 GBT 5613-1995 铸钢牌号表示方法

3.3 GBT 5615-1985 铸钢件热处理状态的名称、定义及代号

3.4 GBT 5677-1985 铸钢件射线照相及底片等级分类方法

3.5 GBT 5680-1998 高锰钢铸件

3.6 GBT 6967-1986 工程结构用中、高强度不锈钢铸件

3.7 GBT 7233-1987 铸钢件超声探伤及质量评级方法

3.8 GBT 7659-1987 焊接结构用碳素钢铸件

3.9 GBT 8492-2002 —般用途耐热钢和合金铸件

3.10 GBT 8493-1987 —般工程用铸造碳钢金相

3.11 GBT 9943-1988 铸钢件渗透探伤及缺陷显示迹痕的评级方法

3.12 GBT 9444-1988 铸钢件磁粉探伤及质量评级方法

3.13 GBT 11352-1989 —般工程用铸造碳钢件

3.14 GBT 13925-1992 铸造高锰钢金相

3.15 GBT 14408-1993 —般工程与结构用低合金铸钢件

3.16 GBT 16253-1996 承压钢铸件

3.17 JBT 50006-1998 重型机械通用技术条件铸钢件

3.18 JBT 500014-1998 重型机械通用技术条件铸钢件无损探伤

3.19 JBT 6402-1992 大型低合金钢铸件

3.20 JBT 6403-1992 大型耐热钢铸件

3.21 JBT 404-1992 大型高锰钢铸件

3.22 JBT 6405-1992 大型不锈钢铸件

3.23 IBT 7024-1993 300~600MW 汽轮机缸体铸钢件技术条件

3.24 JBT 7349-2002 混流式水轮机焊接转轮不锈钢叶片铸件

3.25 JBT 7350-2002 轴流式水轮机不锈钢叶片铸件

3.26 JBT 1026-2001 混流式水轮机焊接转轮上冠、下环铸件

4 铸造有色合金标准规范汇编

4.1 GBT 1173-1995 铸造铝合

4.2 GBT 1174-1992 铸造轴承合金

4.3 GBT 1175-1997 铸造锌合金

4.4 GB 1176-1987 铸造铜合金技术条件

4.5 GB 1177-1991 铸造镁合

4.6 GBT 6614-1994 钛及钛合金铸件

4.7 GBT 8063-1994 铸造

4.8 GBT 9438-1999 铝合金铸件

4.9 GB 11346-1989 铝合金铸件 射线照相检验针孔(圆形)分级

4.10 GBT 15073-1994 铸造钛及钛合金牌号和化学成分

4.11 GBT 16746-1997 锌合金铸件

4.12 GBT 8733-2000 铸造铝合金锭

5 压铸合金标准规范汇编

5.1 GBT 13818-1992 压铸锌合金

5.2 GBT13821-1992 锌合金压铸件

5.3 GBT 13822-1992 压铸有色合金试样

5.4 GBT 15114-1994 铝合金压铸件

5.5 GBT 15115-1994压铸铝合金

5.6 GBT 15116-1994 压铸铜合金

5.7 GBT 15117-1994 铜合金压铸件

5.8 JB 3070-1982 压铸镁合金技术条件

6 熔模铸造标准规范汇编

6.1 GB 12214-1990 熔模铸造用硅砂、粉

6.2 GB 12215-1090 熔模铸造用铝矾土砂、粉

6.3 GBT 14235.1-1993 熔模铸造模料熔点测定方法(冷却曲线法)

6.4 GBT 14235.2-1993 熔模铸造模料抗弯强度测定方法

6.5 GBT 14235.3-1993 熔模铸造模料灰分测定方法

6.6 GBT 14235.4-1993 熔模铸造模料线收缩率测定方法

6.7 GBT 14235.5-1993 熔模铸造模料表面硬度测定方法

6.8 GBT 14235.6-1993 熔模铸造模料酸值测定方法

6.9 GBT 14235.7-1993 熔模铸造模料流动性测定方法

6.10 GBT 14235.8-1993 熔模铸造模料粘度测定方法

6.11 GBT 14235.9-1993 熔模铸造模料热稳定性测定方法

6.12 JBT 2980.1-1999 熔模铸造型壳高温热变形试验方法

6.13 JBT 2980.2-1999 熔模铸造型壳高温抗弯强度试验方法

6.14 JBT 4007-1999 熔模铸造涂料试验方法

6.15 JBT 4153-1999 型壳高温透气性试验方法

6.16 JBT 5100-91 熔模铸造碳钢件技术条件

7 铸造用生铁及铁合金标准规范汇编

7.1 GBT 717-1998炼钢用生铁

7.2 GBT 718-2005 铸造用生铁

7.3 GBT 1412-2005 球墨铸铁用生铁

7.4 GB 2272-1987 硅铁

7.5 GB 3282-1987 钛铁

7.6 GBT 3648-1996 钨铁

7.7 GB 3649-1987 钼铁

7.8 GBT 3650-1995 铁合金验收、包装、储运、标志和质量证明书的一般规定

7.9 GBT 3795-2006锰铁

7.10 GBT 4008-1996 锰硅合金

7.11 GB 4009-1989 硅铬合金

7.12 GBT 4010-1994 铁合金化学分析用试样的采取和制备

7.13 GBT 4137-2004 稀土硅铁合金

7.14 GBT 4138-2004 稀土镁硅铁合金

7.15 GBT 41390-2004 钒铁

7.16 GB 5683-1987 铬铁

7.17 GB 5684-1987 真空法微碳铬铁

7.18 GB/T 7737-1997铌铁

7.19 GB 7738-1987 铁合金产品牌号表示方法

7.20 GB 8729-1988 铸造焦炭

7.21 GBT 9971-2004 原料纯铁

7.22 GBT 13247-1991 铁合金产品粒度的取样和检测方法

7.23 GBT 1 4984-1994 铁合金术语

7.24 GBT 15710-1995 硅钡合金

7.25 YBT 092-1996合金铸铁球

7.26 YBT 093-1996 低铬合金铸铁段

8 铸造用造型材料标准规范汇编

8.1 GBT 2684-1981 铸造用原砂及混合料试验方法

8.2 GBT 7143-1986 铸造用硅砂化学分析方法

8.3 GBT9442-1998 铸造用硅砂

8.4 GBT 12216-1990 铸造用合脂粘结剂

8.5 JBT 2755-1980 铸造用亚硫酸盐木浆废液粘结剂

8.6 JBT 3828-1999 铸造用热芯盒树脂

8.7 JBT 5107-1991 砂型铸造用涂料试验方法

8.8 JBT 6984-1993 铸造用铬铁矿砂

8.9 JBT 6985-1993 铸造用镁橄榄石砂

9 性能试验方法标准规范汇编

9.1 GBT 228-2002 金属材料室温拉伸试验方法

9.2 GBT 229-1994 金属夏比缺口冲击试验方法

9.3 GBT 230.1-2004 金属洛氏硬度试验第1 部分:试验方法(A、B、C、D、E、F、G、H、K、N、T标尺)

9.4 GB/T 230.2-2002 金属洛氏硬度试验第2 部分:硬度计(A、B、C、D、E、F、G、H、K、N、T标尺)的检验与校准

9.5 GBT 230.3-2002 金属洛氏硬度试验第3 部分:标准硬度块(A、B、C、D、E、F、G、H、K、N、T标尺)的标定

9.6 GBT 231.1-2002 金属布氏硬度试验第1 部分1试验方法

9.7 GBT 231.2-2002 金属布氏硬度试验第2 部分:硬度计的检验与校准

9.8 GBT 231.3-2002 金属布氏硬度试验第3部分:标准硬度块的标定

9.9 GBT 232-1999 金属材料弯曲试验方法

9.10 GBT 1172-1999 黑色金属硬度及强度换算值

9.11 GBT 2039-997 金属拉伸蠕变及持久试验方法

9.12 GBT 4337-1984 金属旋转弯曲疲劳试验方法

9.13 GBT 4338-1995 金属材料高温拉伸试验

9.14 GBT 7314-2005 金属压缩试验方法

9.15 GBT 12778-1991 金属夏比冲击断口测定方法

9.16 GBT 13239-1991 金属低温拉伸试验方法

9.17 GBT 13298-1991 金属显微组织检验方法

只是中国的就不只这么多,其余还有还有欧洲标准、日本标准等等。

     铸造是装备制造业发展的重要基础和保障。山东是铸造大省,产业规模约占全国10%。为贯彻落实省委省政府新旧动能转换重大工程决策部署,加快推动铸造产业转型升级,夯实装备制造业发展基础,山东省工信厅、财政厅联合国家机械科学研究总院集团在潍坊建设了山东省铸装工业云服务平台。

       山东省铸装平台启用暨先进制造技术与绿色智能装备研讨会在潍坊举行。记者从山东省工信厅获悉,山东省铸装工业云服务平台是国内第一个细分领域的专业化网络共享平台。平台的一大特点是可以将部分企业的富余铸造产能或生产线(生产设备)“线上共享”,有需求的企业选定后即可在线实现订单生产,从而解决部分企业产能过剩、设备闲置,部分企业产能不足、订单积压的问题。

   据了解,作为连接铸造零部件和装备整机企业、线上信息和线下资源的桥梁纽带,平台有部件定制、制造商城、项目协同等八大板块功能,可以帮助企业在线快速完成产品采购、研发试制、配套生产、标准和技术咨询等业务,打通铸造与装备企业的对接渠道,形成“协同生产、分散使用、优化配置、制造共享、技术互通”的线上线下一体化服务体系,大幅提高产供销效率和产品质量。现在平台上线企业已达500家,随着平台的扩大和完善,这些企业足不出户即可满足网上接单、产品开发、技术服务等需求。

    高端定位、绿色发展、合作创新、提升水平、提质增效、示范引领”是银川市委市政府对银川经开区的发展要求,“打造千亿级升级版经开区”是园区的发展目标。努力解决发展高质量、治理现代化、城市国际化、生态园林化“一高三化”进程中发现的问题,以更大作为在全区乃至全国各项事业中走在前列。

以上就是关于铸造工艺设计研究目的和意义的区别全部的内容,如果了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

 
举报收藏 0打赏 0评论 0
 
更多>同类百科头条
推荐图文
推荐百科头条
最新发布
点击排行
推荐产品
网站首页  |  公司简介  |  意见建议  |  法律申明  |  隐私政策  |  广告投放  |  如何免费信息发布?  |  如何开通福步贸易网VIP?  |  VIP会员能享受到什么服务?  |  怎样让客户第一时间找到您的商铺?  |  如何推荐产品到自己商铺的首页?  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  粤ICP备15082249号-2