美国研究人员利用粉末纳米材料延长锂硫电池寿命

   2022-11-02 00:33:28 网络1070
核心提示:锂硫电池在提高电动汽车续航里程方面具有良好的前景。但由于其循环寿命比锂电池短得多,一直没有在市场上应用,美国PNNL的一项研究为其普及提供了可能。最近,PNNL研究人员在美国《纳米快报》上发表文章称,使用独特的粉末纳米材料可以有效改善锂硫电

美国研究人员利用粉末纳米材料延长锂硫电池寿命

锂硫电池在提高电动汽车续航里程方面具有良好的前景。但由于其循环寿命比锂电池短得多,一直没有在市场上应用,美国PNNL的一项研究为其普及提供了可能。最近,PNNL研究人员在美国《纳米快报》上发表文章称,使用独特的粉末纳米材料可以有效改善锂硫电池的短循环寿命,其容量比锂电池高4倍。研究人员表示,锂硫电池最大的问题是,含有硫的阴极会慢慢溶解在电池内部,形成一种溶解在电解液中的多硫化物,而这个过程是不可逆的,导致阴极材料越来越少,极大地影响了电池寿命。为了克服这个问题,PNNL的研究人员发明了一种独特的粉末纳米材料,称为“金属有机框架”,它是多孔的,可以在阴极内部聚集硫分子。PNNL研究员张建明说,“有机金属框架”的作用是收集硫并将其保留在电池阴极内,从而延长电池寿命。目前,PNNL改进的锂硫电池经过100次充放电仍能保持89%的能量。

纯电动车实际续航达到1000公里,还需要多少年?10年够不够?

【能源人都在看,点击右上角加'关注'】

4月29日,LG化学披露2021年第一季度业绩,公司 一季度销售额86.7亿美元,同比增长43.4%;营业利润12.7亿美元,同比增长584%

LG化学表示,这是季度营业利润自公司成立以来首次突破12亿美元,大幅度超过2020年第三季度创下的8.1亿美元的纪录,销售额也超过2020年第四季度创下的80亿美元的纪录。

关于第一季度业绩,LG化学CFO车东锡表示,“在外部环境不确定的情况下,通过业务重组和对新增长引擎的持续投资,奠定了利润增长的坚实基础”。他还强调,“ LG化学将培育正极材料、CNT等电池材料业务作为增长引擎 ,积极投资回收再利用、生物材料等具有未来前景的ESG领域,促进与外部各利益相关方的积极合作,从而实现全面发展”。

LG化学之前发布的2020年度业绩报告显示,该年公司销售额254.7亿美元,同比增长9.9%;营业利润19.9亿美元,同比增长185.1%。LG化学2021年目标销售额为316亿美元,将同比增长24.1%。

计划到2023年达到260GWh产能

值得注意的是,随着动力电池销量的增加,LG化学的全资子公司LG Energy Solution(以下简称“LG新能源”)不断提高产量和降低成本,盈利能力得以提升: 一季度销售额与营业利润双双突破季度新高,销售额实现38.2亿美元,营业利润实现3.1亿美元

LG新能源预计第二季度电动 汽车 的销量增长将带动 汽车 电池和圆柱型电池的业绩增长,通过尽早实现增建生产线和降低成本,继续努力提高盈利能力。

在韩国《The Electronic Times》近日举办的“2021电池日”上,LG新能源电动 汽车 开发中心负责人崔胜东(Choi Seung-don)表示,公司 计划在2025年年底实现锂硫电池商业化,并在2025年至2027年间实现全固态电池商业化 。其中,“锂硫电池可能比全固态电池更早实现商业化”。这是LG能源解决方案首次详细披露下一代电池开发进展和商业化计划。

此外,LG新能源计划到2023年达到260GWh产能,“这将是全球最高产能”。

崔胜东还详细介绍了公司针对电动 汽车 电池领域的发展战略:

电池联盟注意到,LG新能源正在推进全固态电池和锂硫电池的研发,那这两种电池有哪些不同?LG新能源花大力气投资这两种电池的理由是什么呢?

研发全固态电池和锂硫电池

固态电池在能量密度、安全性、成本等方面均优于锂电池,被认为是液态电池的下一代技术 ,吸引着各方争相投资。不过,当前液态锂离子电池是全球车用动力电池首选,固态电池要想做到完全量产,还需要克服很多难题。

和固态电池相比,锂硫电池对于大多数人来说,还是一个相对陌生的事物。

公开资料显示, 锂硫电池是一种以硫为正极、锂为负极的锂电池。 一般情况下,该电池的能量密度是锂离子电池的1.5倍。同时,硫储量丰富、价格低廉,回收时比金属更方便、效益更高。

锂硫电池的最大优点是轻,不仅适用于飞行器,还是城市空中交通(UAM)的很好选择。

成本及性能优势是LG新能源考虑将锂硫电池用于电动 汽车 的主要原因。

早在去年9月,LG化学就宣布,搭载锂硫电池的太阳能无人机高空试飞成功,以22km的飞行高度在韩国国产无人机的平流层飞行中创下 历史 最高记录。

同年12月,LG化学验证锂硫电池长效性能,搭载该电池的无人机滞空时间达13小时11分钟,其中在12-22km高的平流层飞行7小时。

不过,对于LG将研发能量密度大于410Wh/kg的车用锂硫电池的传闻,宁德时代之前表示,虽然公司已有相应技术储备,但 锂硫电池存在一些技术劣势,如循环寿命较差,体积能量密度低 ,就目前技术状态来看不太适合用于对体积能量密度要求高的应用场景。

新消息不断

去年12月,LG新能源正式从LG化学拆分成立,该公司 计划到2021年末前,将电池年产量从2020年的120GWh增加到156GWh,提高30%。

而今年以来,关于LG新能源的消息不断:

今年年初,据外媒报道, LG新能源计划于今年年底前首次公开发行股票(IPO),并在今年年底上市

LG新能源方面对此回应称,待相关事项确定后,公司将正式发布公告。若LG新能源能按期在2021年内上市,有望成为2021年韩国市场最大的一笔IPO。

业界人士普遍认为, LG新能源的企业价值至少为50万亿韩元(约合人民币2953亿元)。鉴于蓄电池产业呈现超高速增长态势,其企业价值可能高达100万亿韩元。

4月15日,LG新能源成为全球电池行业中首个同时加入RE100和EV100的企业。 LG新能源承诺在2030年前,在全球所有生产经营场所将100%使用可再生能源电力、并将LG新能源的运营车辆全部更换成新能源车型。此举将是LG新能源全球可持续经营发展的又一里程碑,奠定企业ESG经营的坚实基础。 4月16日,LG新能源董事会发布公告称,公司决定出资1.06万亿韩元(约合人民币62亿元),用于建设与通用 汽车 平分股权的Ultium Cells公司的第二家合资工厂。 据预测,兴建第二电池厂合计投资2.7万亿韩元。LG方面将从今年至2023年,分批投资1.06万亿韩元。

LG新能源方面3月表示,这家耗资23亿美元的电池厂将在田纳西州建造。它的规模将与在俄亥俄州建立的首家LG-GM合资电池厂Ultium Cells的规模相似。年产能为35GWh,工厂计划于2022年开始运营。

LG新能源的目标是,到2025年,除与通用 汽车 的合资企业外,投资超过5万亿韩元(292亿人民币),确保仅在美国的电池产能就达到70GWh。

此外,还有知情人士透露, LG新能源计划在2023年开始为特斯拉生产其先进的4680电芯 ,并正在考虑在美国和欧洲建设生产基地。

全国能源信息平台联系电话:010-65367702,邮箱:hz@people-energy.com.cn,地址:北京市朝阳区金台西路2号人民日报社

能耐极寒和酷热的新型锂离子电池开发成功

电动车实际续航达到1000km,并且推广到市场上,起码还需要10年。

光从续航里程的角度来说,现在就已经有很多企业研发出来能让电动车达到1000km的续航的电池了。

比如说:2020年1月份,澳大利亚莫纳什大学开发出的锂硫电池,性能是锂离子电池的4倍以上,一次充电能支撑电动 汽车 行驶超过1000km。

2020年7月份,广汽研发的新型硅负极材料动力电池,能使电动 汽车 的续航突破1000km。

2020年10月份,韩国蔚山国立科学技术研究院和三星高级技术研究所的联合研究团队,成功开发出陶瓷基锂空气电池,使电动 汽车 一次充电就能行驶1000km。

但是,如果在考虑整车成本、可靠性的情况下,量产车上目前还是做不到1000km的实际续航的。

用中国大众CEO冯思翰的话来讲:目前电池技术并没有实质性的突破,高续航的电动车需要更重的电池,因此就需要车身更加轻量化,成本会更高,不划算。

齐郑欣在《百科论坛电子杂志》发表的论文分享给你,《新能源 汽车 轻量化的关键技术》上面讲:电池重量增加会导致 汽车 的总质量增加。

好理解,从而使 汽车 的重要零部件,比如说:底盘等等,性能受到影响,从而影响 汽车 的寿命,甚至影响其安全性。

说人话就是这样的:目前1000km的续航,大多数都是靠增加电池来实现的。

就好比:汽油车,一箱油能开500km,对不对?想要开到1000km,「哎呀」2个油箱,一模一样的2个油箱就可以了,是这么个样子。

所以说,在这种情况下,想要做到原本的可靠性、操控性,车子的成本就会上升很多。所以说,现在量产电动车基本还是做不到1000km的续航的。

比如说:2020年1月份,蔚来发布的新车eT7也有续航1000km的版本的,但实际上,1000km续航的版本没有现车,官方宣称起码要一年后才能交付。

所以如果想要在同样的电池体积、同样的重量的情况下,使电池续航能够达到1000km,有可能10年是需要的。

各位朋友都知道的:电池的能量密度越高,电动车的续航里程一般也就越大,对吧?

恒大研究院发布了一个《中国新能源 汽车 发展报告2020:穿越疫情的至暗时刻》。

上面讲:2017年电动车的平均续航里程是212km,电池的平均能量密度仅仅只有104Wh/kg。

到了2020年的时候,平均续航已经达到391km了,电池平均能量密度达到了153Wh/kg。

简单地推算一下,当能量密度达到350Wh/kg,电动车的续航里程才能达到1000km。

而能量密度平均每年增长为15.4%,也就是说,从2020年开始算,起码要6年才能达到350Wh/kg的水平。

我以前视频里面也讲过,电动车的实际续航里程起码还是要缩水个30%的。也就意味着有可能要往后面延10年左右,实际的续航里程才能达到1000km。

当然这些都是估算,我是按照现在的速度算,说不定以后 科技 发展了,也不是百分之十几了,刷一下就上去了,只是我们心中有一个概念。

但是我们开一下脑洞,反回来想也有一种可能,就是:以后的电动车永远都达不到1000km的续航,因为这么高的续航里程是没有必要的。

北京航空航天大学教授徐向阳有个说法:

当电动车续航里程超过500km以后,应该更关注的是安全、成本和充放电的快捷和便利性,而不是一味地去追求1000km的续航里程。

想想也是有道理的,如果是:1000km,说充电要充3天不让动的,我宁可选500km,你给我30分钟充好的,对不对?

中国 汽车 工程学会名誉理事长付于武也表示:

把1000km续航作为一个追求的标准,是有点资源的浪费的,而且不够清洁,失去了电动车应有的节能减排意义。

说人话就是这样的:一辆汽油车加满一箱油,续航里程也就是600km左右,如果电动车能解决充电的问题,也大概率是不需要再来个很夸张的1000km了。

总得来讲,有车企宣称已经达到1000km续航了,但都还不是量产的技术。

想要大部分量产车实际续航达到1000km以上,按照目前的增速来推算,10年有可能跑不了,而且达到了,说不定也未必需要。

电动车其实我们又觉得厉害了,开了快了、解决能源问题了,还有一个就是说:电动车比较环保。

相比燃油车,它究竟环保在哪里?相比之下,它对环境的破坏又减少了多少?

除了环保,电动车的使用成本的确也更低,现在的电动车用一年,它的电费和燃油车的油钱比,能省下多少钱?

我买个更贵一点的电动车,通过“开得多”能不能赚回来?

想知道这些很简单,关注「备胎说车」,回复关键词「电动车」就可以了。

每天给你一段 汽车 实用小干货,文字、音频、视频,挑自己喜欢的版本就可以了,「备胎说车」等你来玩哦。

参考文献

[1] 齐郑欣.新能源 汽车 轻量化的关键技术[J].百科论坛电子杂志,2018.

[2] 中国新能源 汽车 发展报告2020:穿越疫情的至暗时刻.恒大研究院,2020.

能耐极寒和酷热的新型锂离子电池开发成功

能耐极寒和酷热的新型锂离子电池开发成功,美国加州大学圣地亚哥分校工程师开发了一种锂离子电池,该电池在极寒和酷热的温度下表现良好,能耐极寒和酷热的新型锂离子电池开发成功。

能耐极寒和酷热的新型锂离子电池开发成功1

近期,加州大学圣地亚哥分校(UCSD)的工程师们开发出了一种新型锂离子电池,据称这种电池在极冷和高温下都能表现良好,同时仍能储存大量能量。

根据研究人员的说法,这一“壮举”是通过开发一种新型电解质实现的。这种电解质不仅可以在较宽的温度范围内坚挺耐用,而且可以与高能阳极和阴极兼容。上述研究成果已于近期发表在了《美国国家科学院院刊》(PNAS)上。

UCSD雅各布斯工程学院纳米工程学教授、该研究的资深作者Zheng Chen表示,基于这项技术开发的车用电池,即使在寒冷气候下也能让电动汽车行驶更远。此外,它们还可以减少对冷却系统的需求,以防止车辆的电池组在炎热气候下过热。

Chen 解释说:“高温对于汽车电池来说是一个重大挑战。在电动汽车中,电池组通常位于底盘,更靠近炎热的道路。此外,电池在运行过程中会因电流通过而升温。如果电池不能承受这种高温,它们的性能将迅速下降”。

在测试中,该电池在-40°C和50°C下分别保留了87.5%和115.9%的能量容量。在这些温度下,它们还分别具有98.2%和98.7%的高库伦效率,这意味着电池在停止工作之前可以进行更多的充放电循环。

上述优异的性能都要归功于Chen和同事们开发的独特电解质。它由二丁醚与锂盐混合而成的液体溶液制成。二丁醚的一个特点是其分子与锂离子的结合较弱。换句话说,当电池运行时,电解质分子很容易释放锂离子。

研究人员在之前的一项研究中发现,这种微弱的分子相互作用可以提高电池在零下温度下的性能。另外,二丁醚很容易吸收热量,因为它在高温下保持液态(沸点为141°C)。

附加优势

此外,这种电解质的另一个特别之处在于它与锂硫电池兼容,锂硫电池是一种可充电电池,其阳极由锂金属制成,阴极由硫制成。锂硫电池是下一代电池技术的重要组成部分,因为它拥有更高的能量密度和更低的成本。

据了解,锂硫电池每公斤存储的能量是当今锂离子电池的两倍,这可以使电动汽车的续航里程增加一倍,而不会增加电池组的重量。此外,与传统锂离子电池阴极中使用的钴相比,硫的储量更为丰富。

但锂硫电池也存在问题。阴极和阳极都是超活性的。硫阴极非常活泼,在电池运行过程中会溶解;在高温下,这个问题会变得更严重。锂金属阳极容易长出枝晶,会导致电池短路,甚至有起火风险。因此,锂硫电池最多只能循环使用几十次。

“如果你想要一个高能量密度的电池,你通常需要使用非常苛刻、复杂的化学物质,”Chen说,“高能量意味着更多的反应发生,这意味着更少的稳定性,更多的降解。制造一种稳定的高能电池本身就是一项艰巨的任务,试图在更大的温度范围内做到这一点更具挑战性。”

UCSD研究团队开发的二丁醚电解质可以防止这些问题。即使在极端温度下,他们测试的电池也比典型的锂硫电池有更长的循环寿命。Chen说,“我们的电解液有助于改善阴极侧和阳极侧,同时提供高导电性和稳定性”。

能耐极寒和酷热的新型锂离子电池开发成功2

美国加州大学圣地亚哥分校工程师开发了一种锂离子电池,该电池在极寒和酷热的温度下表现良好,同时还能储存大量电能。本周发表在《美国国家科学院院刊》上的一篇论文描述了这种耐温度变化的电池。

加州大学圣地亚哥分校雅各布斯工程学院纳米工程教授、该研究的资深作者陈政说,这种电池可让寒冷气候下的电动汽车一次充电就能行驶更远;还可减少对冷却系统的.需求,以防止车辆的电池组在炎热气候下过热。

研究人员在冰点以下温度测试电池。图片来源:David Baillot/加州大学圣地亚哥分校

在测试中,概念验证电池在-40℃和50℃下分别保留了87.5%和115.9%的电能容量。在这些温度下,它们还分别具有98.2%和98.7%的高库仑效率,这意味着电池在停止工作之前可进行更多的充电和放电循环。

研究人员此次开发了一种更好的电解质,这种电解质既耐寒又耐热,而且与高能阳极和阴极兼容。电解质由二丁醚与锂盐混合而成的溶液制成。二丁基醚的一个特点是其分子与锂离子的结合较弱,当电池运行时,电解质分子很容易释放锂离子。

这种电解质的另一个特别之处在于它与锂硫电池兼容。锂硫电池是下一代电池技术的重要组成部分,因为它们有望实现更高的能量密度和更低的成本。但锂硫电池的阴极和阳极都具有超强反应性。在高温下,锂金属阳极容易形成称为枝晶的针状结构,可刺穿电池的某些部分,导致电池短路。结果,锂硫电池只能持续数十次循环。

二丁基醚电解质可防止这些问题,即使在高温和低温下也是如此。他们测试的电池比典型的锂硫电池具有更长的循环寿命。研究团队还通过将硫阴极接枝到聚合物上来设计更稳定的硫阴极。这可以防止更多的硫溶解到电解液中。

团队表示,下一步研究工作将包括扩大电池化学成分、优化电池以使其在更高的温度下工作以及进一步延长循环寿命。

能耐极寒和酷热的新型锂离子电池开发成功3

一种新型锂离子电池既可以在零下 40°C 的低温下工作,也可以在 50°C 的高温下工作。这种新型电池阴极使用硫制作,电池可以储存更多的能量。这是来自加州大学圣地亚哥分校(UCSD)的一项新研究。

这种电池可以增加电动汽车在寒冷温度下的行驶里程。此外,它们还可以用于卫星、航天器、高空无人机和潜艇。UCSD 纳米工程教授陈政(Zheng Chen)表示:通过大幅扩展锂电池的可操作窗口,我们可以为电动汽车之外的应用提供更强大的电化学物质。

目前来看,电池用石墨阳极和锂金属氧化物阴极,这种组合不能很好地处理极端温度。高温会加剧电池内部本已高度活跃的化学环境,引发分解电解质和其他电池材料的副反应,导致不可逆转的损害。与此同时,低温会使液体电解质变稠,所以锂离子在其中缓慢移动,导致电能损耗和充电缓慢。

对电池进行绝缘或从内部加热的方法有助于解决低温问题。研究人员之前还对电解质进行设计以扩大电池温度范围,但这可以提高低温或高温下的性能,而不是同时提高性能。

陈政教授团队的研究《Solvent selection criteria for temperature-resilient lithium–sulfur batteries》刊登在了 7 月 5 日的《美国国家科学院院刊》(PNAS)上,他们表示新型耐极端温度电池的核心是找到一种新电解质。

他们通过将锂盐溶解在二丁醚溶剂中来制造电解质。与现有的用于电池的碳酸乙烯溶剂不同,新材料在零下 100°C 的温度下不会结冰,也不容易蒸发。此外,其溶剂分子与锂离子结合较弱,所以锂离子在其中移动更自由,即使在冰点温度下。

UCSD 团队通过将硫附着在塑料基材上来解决硫阴极降解问题。同时,新的电解质允许锂离子的均匀传输,因此它们没有机会粘在一起并形成枝晶。

在团队测试中,原型电池持续了 200 次循环,并在 -40°C 下还能保持超过 87% 的原始容量。在 50°C 时,电池的容量增加了 15%,陈政教授表示,因为更高的温度会增加电荷转移和锂离子通过电解质并扩散到电极上,因而推动了电池容量和能量极限 。

该研究的第一作者、UCSD 纳米工程博士后研究员 Guorui Cai 准备了一个电池袋电池(battery pouch cell),用于在低于冰点的温度下进行测试。

这种电解质的另一个特别之处在于它与锂硫电池兼容,锂硫电池是一种可充电电池,其阳极由锂金属制成,阴极由硫制成。锂硫电池是下一代电池技术的重要组成部分,因为这种电池具有更高的能量密度和更低的成本。

它们每公斤存储的能量是当今锂离子电池的两倍——这可以使电动汽车的续航里程增加一倍,而不会增加电池组的重量。此外,与传统锂离子电池阴极中使用的钴相比,硫的来源更丰富且问题更少。

但锂硫电池存在另一些问题——其阴极和阳极都过于活跃。硫正极非常活泼,以至于它们在电池运行期间会溶解。这个问题在高温下会变得更糟。锂金属阳极容易形成称为枝晶的针状结构,可以刺穿电池的某些部分,导致电池短路。因此,锂硫电池只能持续数十次循环。

「如果你想要一个能量密度高的电池,你通常需要使用非常精确、复杂的化学物质,」陈政说道。「高能量意味着更多的反应正在发生,这意味着稳定性更低,降解更多。制造稳定的高能电池本身就是一项艰巨的任务——试图在很宽的温度范围内做到这一点更具挑战性。」

UCSD 研究小组开发的二丁醚电解质可以防止这些问题,即使在高温和低温下也是如此。他们测试的电池比典型的锂硫电池具有更长的循环寿命。「我们的电解质有助于改善阴极和阳极侧,同时提供高导电性和界面稳定性,」陈政介绍说。

该团队还通过将硫阴极接枝到聚合物上来设计更稳定的硫阴极。这可以防止更多的硫溶解到电解液中。

接下来的步骤包括扩大电池化学成分,优化它以在更高的温度下工作,并进一步延长循环寿命。

UCSD 纳米工程教授陈政。

容量的增加不一定是一件好事,因为这同时也会使电池负担过重。为了解决这个问题,研究人员必须进一步改进电池的化学成分,以便它能够维持更多的充电周期。他们还计划通过更多的细胞工程来提高能量密度。目前,新电池的密度仅比今天的锂离子电池略高一点,与锂硫理论上的承诺相差无几。「我们至少可以将能量密度提高 50%,」陈政表示。「这就是希望,这就是承诺。」

以上就是关于美国研究人员利用粉末纳米材料延长锂硫电池寿命全部的内容,如果了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

 
举报收藏 0打赏 0评论 0
 
更多>同类百科头条
推荐图文
推荐百科头条
最新发布
点击排行
推荐产品
网站首页  |  公司简介  |  意见建议  |  法律申明  |  隐私政策  |  广告投放  |  如何免费信息发布?  |  如何开通福步贸易网VIP?  |  VIP会员能享受到什么服务?  |  怎样让客户第一时间找到您的商铺?  |  如何推荐产品到自己商铺的首页?  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  粤ICP备15082249号-2