稀土在新能源领域的应用现状

   2023-06-14 18:27:45 网络810
核心提示:好。稀土是化学周期表中镧系元素和钪、钇共十七种金属元素的总称,产量稀少,但是运用很广,在新能源领域的应用现状的很好。新能源又称非常规能源,是指传统能源之外的各种能源形式,如太阳能、地热能、风能、海洋能、生物质能和核聚变能等。太阳能发电的金属

稀土在新能源领域的应用现状

好。稀土是化学周期表中镧系元素和钪、钇共十七种金属元素的总称,产量稀少,但是运用很广,在新能源领域的应用现状的很好。新能源又称非常规能源,是指传统能源之外的各种能源形式,如太阳能、地热能、风能、海洋能、生物质能和核聚变能等。

太阳能发电的金属来源?

稀土就是化学元素周期表中镧系元素—镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素—钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth)。简称稀土(RE或R)。

稀土元素通常分为二组:

1)轻稀土(又称铈组):镧、铈、镨、钕、钷、钐、铕、钆。

2)重稀土(又称钇组):铽、镝、钬、铒、铥、镱、镥、钪、钇。

铈组与钇组之别,是因为矿物经分离得到的稀土混合物中,常以铈或钇比例多的而得名。

漫活稀土

一、显赫的大家族

在元素周期表上镧系元素(Ln)占有一格位置,却拥挤着15个元素。其原子序数从57至71依次排列,它们是镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm,)、镱(Yb)和镥(Lu)。加上同属ⅢB族的钪(Sc)和钇(Y),原子序数分别为21和39,这17个元素通称为稀土(RE)。通常将稀土分为两组,从镧至铕7个元素为轻稀土,从钆至镥8个元素为重稀土。根据稀土分离工艺的需要,也可分为轻、中、重三组。

它们好像孪生的兄弟姐妹一样“长相”相似。也就是稀土原子最外二层电子排列相同,因此许多化学性质非常相似,难以用简单的化学方法将它们分开,以至于化学家和矿物学家寻寻觅觅化费153年才一一把它们辨认出来(1794年首先发现钇,1947年考耶尔和马林斯基等人在处理铀核裂变生成的放射性同位素时,用离子交换法从镧系元素中发现了钷)。又由于稀土各元素原子内层电子结构并不一样,原子序数不一样,它们是不同的元素,因此稀土每个成员又有不同的脾气和特性。它们个个身手不凡,在国民经济各领域各显神通。特别是研究稀土元素特有的丰富的电子能级,利用其优异的光、磁、电、热性能开发功能性新材料和器件,可预期在21世纪六大新技术领域——信息、生物、新材料、新能源、空间和海洋,稀土家族的贡献将是显赫的。

二、稀土不稀

“稀土”名称的由来是历史的误会。18世纪时发现稀土工业原料的矿产不多,形成独立的矿更少又很分散,造成稀少的假象。它们的氧化物和土壤的氧化物在性质和组成上很相似,而且不溶于水,因此取名“稀土”。其实稀土在地壳中含量并不稀少。表1列出稀土元素在地壳中丰度,有的比某些常见元素含量还多。例如铈比锡高,钇与铅高,即使少见的铥也比银、汞还多。

中国是稀土大国,有丰富的稀土资源,轻、中、重稀土齐全。储量、产量都是世界第一。用量仅少于美国。生产近千个规格400多种产品,是世界稀土产品主要供应国,占世界市场的70-80%。

三、神奇的稀土

稀土的神奇作用表现在两方面:一、在国民经济各领域都可找到稀土成员的踪影,每年为国家创造巨大的经济效益和社会效益。二、随着科学技术的进步,越来越发挥神奇的作用。

1.工业“维生素”

稀土在钢中有净化钢液、使夹杂物变性和微合金化作用。因此钢中加微量稀土就可大幅度提高钢的强度,韧性、耐磨性和抗氧化能力。誉为工业“维生素”。包钢、钢研总院、铁科院联合研制的稀土铌重轨钢铺轨,使用寿命提高50%以上,而且经济效益十分明显。铝合金中加微量钪和锆,具有高强度与韧性,良好的耐磨性和可焊性。是航天航空、舰船和核能领域新型铝合金材料。稀土应用于铝电线电缆,提高了导电性和强度。已成为国家级电网规范性产品,成功用于50万伏超高压输电线。我国生产的加稀土铝电线电缆,年产能力超过40万吨,投入使用每年可节电40亿度。

2.稀土催化剂

采用含稀土的硅铝酸盐分子作裂化催化剂,在我国炼油工业中普及率已达98%。提高催化裂化能力20-30%。每年多产300万吨轻质油,直接经济效益60亿元以上。汽车排放的尾气中含有大量CO、NOx等有害物。用贵金属作催化剂转化为无害的CO<sub>2<sub>、H<sub>2<sub>O及N<sub>2<sub>国外已有成功经验及产业化生产。我国盛产稀土,开发含少量或不含贵金属的稀土催化剂已成为研究的热点。有的已通过鉴定向产业化迈进。

3.农业“维生素”与稀土农用新技术

我国科技工作者大量研究和示范表明,合理施用微量稀土(主要是La和Ce),可促进农作物生根发芽,增加叶绿素,促进作物对氮、磷、钾、钙的吸收,增加干物质的积累,从而增加产量改善品质。经过30年历程,稀土应用已扩展到农、牧、林业。

提高对太阳光的利用率,是农产品提高质与量的好途径。曾报道用铕的多核有机配合物加入农用塑料薄膜中作为太阳光的转化剂。成功地将是光中对植物有害的紫外光转化为植物光合作用所需红光,促进了植物的生长。用人们爱吃的西瓜、西红柿、草莓……作实验,结果糖分增加,瓜果更甜了,维生素C含量也增加了。平均增产10%,经济效益增长12%左右。特别是促进作物早熟,作物早期产量提高更显著。

4.稀土在高新技术领域的应用

随着科技进步与高新测试仪器和方法的发展,加速了稀土新材料与器件开发与应用的速度。稀土发光材料的研究与应用已成为信息显示、照明光源、光电器件等领域支撑材料,并使我们的生活五光十色。如稀土节能灯光效高、光色好、寿命长。与常用白炽光比可节电75-80%。稀土是理想的彩色电视发光材料,我国产品已达国际水平,40%产品出口。将来可能进入寻常百姓家的高清晰度、壁挂式大屏蔽彩电,也可能选择稀土的荧光粉作显示材料。含稀土的荧光材料对太阳能的应用也显示了神奇。近年研制的发射绿和蓝光发光材料(俗称夜光粉),吸收和贮存阳光(或灯光)后,在暗处不需外加电源可发光12小时以上,作为标志物可军用也可民用。近30年来由于信息、通讯、原子能、电子工业和空间技术发展,稀土氧化物已成为光学玻璃、激光玻璃、光学纤维、红外玻璃、耐辐射玻璃等光功能玻璃的重要成份。

含稀土的镍氢电池已取作污染环境的镍镉电池,广泛用于便携式电器如移动电话、音响设备、笔记本电脑等。将来的目标是电动汽车,彻底解决汽车尾气污染问题。

含稀土的永磁材料是最好的,我国已进入第三代稀土永磁体——钕铁硼磁体。广泛用于计算机通讯、自动化、音像、机电、仪器仪表、航天航空、医疗等。磁致冷是使用固体磁性材料,不使用氟利昂和压缩机的一种全新制冷技术,具有高效节能无环境污染两大优势。稀土元素钆(Gd)是室温磁致冷材料主要成份。与之配套的关键部件如永磁体及永磁电机都和稀土有关,因此室温磁致冷技术是稀土高科技的典型应用,我国正处于技术攻关阶段。其他如磁光存储材料、磁致伸缩材料、巨磁阻材料,稀土高温超导材料……也等待人们继续努力探索稀土的神奇作用,以改变目前我国稀土在高新技术领域应用比重偏低的状况。将资源优势变为经济优势和技术优势,我国将不仅是稀土大国,也是稀土强国!

太阳能发电主要是光伏方式,核心是硅,不是金属。当然现在还有砷化镓、CIGS (Copper indium gallium selenide)等等其他半导体材料。大体上光伏产业的主要成本来自于加工制造而不是原料。所以现在就讨论储量的问题早了点,毕竟市场还没完全打开,估计再过几十年对镓之类的可能有讨论储量的必要,但是也不是个紧俏的问题,毕竟半导体可互相替代的选择是有的。和中国的稀土政策不搭边,因为几乎就没用到。

采纳哦

以上就是关于稀土在新能源领域的应用现状全部的内容,如果了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

 
举报收藏 0打赏 0评论 0
 
更多>同类百科头条
广告投放>下面是赞助商广告
推荐图文
推荐百科头条
最新发布
点击排行
推荐产品