粉末冶金有哪些国标或企业标准?

   2022-07-27 16:44:42 网络480
核心提示:这方面的标准还挺多的,你可以百度找“工标网”到工标网的主页查询“粉末冶金”就可以查询到关于“粉末冶金”的所有国家标准和企业标准了!标准编号:YB/T 5308-2006标准名称:粉末冶金用还原铁粉标准状态:现行英文标题:Reduced ir

粉末冶金有哪些国标或企业标准?

这方面的标准还挺多的,你可以百度找“工标网”到工标网的主页查询“粉末冶金”就可以查询到关于“粉末冶金”的所有国家标准和企业标准了!

标准编号:YB/T 5308-2006

标准名称:粉末冶金用还原铁粉

标准状态:现行

英文标题:Reduced iron powders for powder metallurgy

替代情况:原标准号GB/T 4136-1994

实施日期:2006-10-11

粉末冶金单位产品能源消耗限额

项目不太好定性,对照国民行业分类录,不属于铜、镍等冶炼行业,废气的排放建议执行大气污染物综合排放标准。如果有工业炉窑的话,应执行工业炉窑大气污染物排放标准。可征求当地生态环境保护部门的意见,请求其对项目分类进行确认,或是征求标准意见。

粉末冶金法的我国粉末冶金法发展现状

《再生铅冶炼企业单位产品能源消耗限额》

国家标准征求意见稿编制说明

一、任务来源

根据国家有色金属标准化技术委员会[2007]68号“关于编制2008年有色金属国家标准、行业标准项目计划的通知”及全国有色金属工业协会中色协综字[2008]242号“关于下达2008年第一批有色金属国家标准制(修)订项目计划的通知”,国家标准《再生铅单位产品能源消耗限额》的编制任务由湖北金洋冶金股份有限公司承担,完成时间2009年

二、编制原则

依据我国有色金属行业生产发展和能源消耗的具体情况,本次标准的编制主要遵循以下原则:

1、落实科学发展观,有利于产业可持续发展,突出自主创新、节能减排,满足循环经济发展的要求;

2、规定能耗统计范围,统一能耗计量计算方法,确定再生铅冶炼企业单位产品的能耗限额指标。

3、标准的制(修)订工作按国家标准《标准化工作导则》GB/T1.1-2000、GB/T1.2-2000、GB/T20001.4和《有色金属冶炼产品、行业标准编写示例》的要求进行,并符合《国家标准编写模板》的电子文本要求。

三、编制背景及意义

我国的再生铅冶炼企业规模小,能耗高,在激烈的国内市场竞争中难以形成优势和核心竞争力,抵御市场风险的能力不强。而且小规模冶炼遍地开花,给我国再生铅产业的健康发展带来了诸多问题,造成了资源的浪费和严重的环境污染。2007年3月,国家发展改革委发布了《铅锌产业准入条件》,该《条件》对铅再生利用项目、企业布局及规模和外部条件、工艺装备、能源消耗、资源综合利用、环境保护等方面都做了明确要求。《铅锌行业准入条件》的出台有利于淘汰落后生产工艺,保持铅供需基本平衡,按照规划有序发展,限制铅冶炼能力盲目增长。

1. 再生铅冶炼规模和外部条件:现有再生铅企业的生产准入规模应大于10000吨/年;改造、扩建再生铅项目,规模必须在2万吨/年以上;新建再生铅项目,规模必须大于5万吨/年。鼓励大中型优势铅冶炼企业并购小型再生铅厂与铅熔炼炉合并处理或者附带回收处理再生铅。

2. 再生铅冶炼工艺装备:发展循环经济,支持铅再生资源的回收利用,需要提高铅再生回收企业的技术和环保水平,走规模化、环境友好型的发展之路。新建及现有再生铅项目,废杂铅的回收、处理必须采用先进的工艺和设备。再生铅企业必须整只回收废铅酸蓄电池,按照《危险废物贮存污染控制标准》(GB18597-2001)中的有关要求贮存,并使用机械化破碎分选,将塑料、铅极板、含铅物料、废酸液分别回收、处理,破碎过程中采用水力分选的,必须做到水闭路循环使用不外泄。对分选出的铅膏必须进行脱硫预处理(或送硫化铅精矿冶炼厂合并处理),脱硫母液必须进行处理并回收副产品。不得带壳直接熔炼废铅酸蓄电池。熔炼、精炼必须采用国际先进的短窑设备或等同设备,熔炼过程中加料、放料、精炼铸锭必须采用机械化操作。禁止利用直接燃煤的反射炉建设再生铅。

3. 再生铅冶炼能源消耗:现有铅冶炼企业综合能耗要低于650千克标准煤/吨;现有冶炼企业要通过技术改造节能降耗,在“十一五”末达到新建企业能耗水平。新建及现有再生铅项目,必须有节能措施,采用先进的工艺和设备,确保符合国家能耗标准。再生铅冶炼能耗应低于130千克标准煤/吨铅,电耗低于100千瓦时/吨铅。新建再生铅企业铅的总回收率大于97%,现有再生铅企业铅的总回收率大于95%,冶炼弃渣中铅含量小于2%,废水循环利用率大于90%。

4. 再生铅冶炼资源综合利用和环境保护:必须有资源综合利用、余热回收等节能设施。烟气制酸严禁采用热浓酸洗工艺。冶炼尾气余热回收、收尘或尾气低二氧化硫浓度治理工艺及设备必须满足国家《节约能源法》、《清洁生产促进法》、《环境保护法》等法律法规的要求。

但是,对于再生铅冶炼企业单位产品能耗和各冶炼工序能耗以及能耗计算原则、计算方法及计算范围都没有明确的规定,以此来规范再生铅单位产品能源消耗管理,完善再生铅产业体系,限制小规模、能耗高企业的准入并逐步淘汰,达到节能减排的目的和满足循环经济发展的要求。为此,针对上述问题,本标准对再生铅冶炼企业单位产品能源消耗限额进行了规定。

四、编制过程简介

为了使新制定的标准更科学、准确、合理,组织了起草小组,制定工作计划和进度安排,填写了“推荐性国家标准项目任务书”,确定了制定原则,并对再生铅主要冶炼企业进行了调研。

1. 2007年11月,成立标准制定工作小组,制定工作计划和进度安排;

2. 2008年2月,编制小组提出标准草案;

3. 2008年3月-5月,数据收集、调研。

4. 2008年6月,编制小组提出修改意见,并完善标准草案

5. 2009年6月, 编制小组提交送审稿。

五、主要编制内容说明

1.企业实际消耗的各种能源

基本是采用国家标准GB2589《综合能耗计算通则》第4.2、4.3、4.4条。

2.企业计划统计期内的能源消耗量

本标准制定了“企业计划统计期内的某种燃料实物消耗量”计算公式:

企业的燃料实物消耗量=企业购入燃料实物量+期初库存燃料实物量—外销燃料实物量-生活和批准的基建项目用燃料实物量—期末库存燃料实量。此公式的实际内容和GB2589《综合能耗计算通则》的第6.2、4.3条一致。

“所消耗的各种能源不得重计或漏计。存在供需关系时,输入输出双方在计算中量值上应保持一致。”采用国家标准GB2589一90《综合能耗计算通则》第4.2条第2小段。

3.能源实物量的计量要求符合《中华人民共和国计量法》和国家标准GB/T17617的规定。

4.各种能源的计量单位

所列能源品种的后面标了其单位符号和单位名称。

5.各种能源(包括生产耗能工质消耗的能源)折算标煤量的方法和《综合能耗计算通则》第7条基本一致。

6.单位产品能耗的产品产量的规定

所有产量,按企业计划统计部门正式上报的数据为准”。

7.间接辅助能耗及损耗(或称间接综合能耗)的分摊方法,仍是“根据各产品工艺能耗占企业生产工艺能耗量的比例,分摊给各个产品”。

10.要求

本部分为产品能耗指标总汇.具体包括对废电池-再生铅工艺、废电池预处理(废电池-铅屑、铅膏)工序、铅膏冶炼(铅膏-再生铅)工序、铅屑冶炼(铅屑-再生铅)工序、金属态铅废料-再生铅工艺等5类再生铅冶炼单位产品能耗所要求的等级指标。

为提高再生铅冶炼准入门槛,促进现有再生铅冶炼企业通过技术改造节能降耗,明确再生铅冶炼企业能耗指标应达到的目标,优化能耗先进水平,标准对再生铅冶炼产品的能耗等级指标规定为三级:能耗限额限定值(现有企业)、能耗限额准入值(新建企业)、能耗限额目标值。能耗限额限定值(现有企业)是符合产业政策的现有再生铅冶炼企业在国家规定的期限内通过技术改造达到新建企业准入条件前的能耗强制性限定指标。能耗限额准入值是新建再生铅冶炼项目能耗的强制性准入条件。能耗限额目标值达到国内同行业同类产品能耗的先进水平或者达到或接近世界同类产品能耗的先进水平,是节能型再生铅冶炼企业要求达到的推荐性能耗指标。

11. 能耗计算范围和计算方法

①工序(工艺)实物单耗、能源单耗和综合能耗

主要有工序(工艺)实物单耗、工序(工艺)能源单耗和综合能耗的计算公式及说明. 工序(工艺)能源单耗的计算公式和国家标准GB2589一2008《综合能耗计算通则》一致。

工序(工艺)实物单耗按式(3)计算:

?????(3)

式中:

Es——某工序(工艺)的实物单耗,单位为千克每吨(kg/t)、千瓦小时每吨(kW_h/t)、立方米每吨(m3 /t);

Ms——某工序(工艺)直接消耗的某种能源实物总量,千克(kg)、千瓦小时(kW_h)、立方米(m3);

PZ——某工序(工艺)产出的再生铅总量,单位为吨(t)。

工序(工艺)能源单耗按式(4)计算:

?????(4)

式中:

EI——某工序(工艺)能源单耗,单位为千克标煤每吨,(kgce/t);

EH——某工序(工艺)直接消耗的各种能源实物量折标煤之和,单位为千克标煤(kgce);

PZ——某工序(工艺)产出的再生铅总量,单位为吨(t)。

工序(工艺)综合能耗按式(5)计算:

EZ= EI + EF ????(5)

式中:

EZ——某产品综合能源单耗,单位为千克标煤每吨,(kgce/t);

EI——某产品工艺(工序)能源单耗,单位为千克标煤每吨,(kgce/t);

EF——某产品间接辅助能耗及损耗分摊量,单位为千克标煤每吨,(kgce/t)。

②废电池-再生铅能耗

分废电池预处理工序(废电池-铅屑、铅膏)、铅膏冶炼工序(铅膏-再生铅)和铅屑冶炼工序(铅屑-再生铅)能耗三种。对工序能耗和工序实物单耗计算方法给予说明,工艺能耗和综合能耗设置了等级指标。工序能耗不再设置等级指标。

③金属态铅废料-再生铅能耗

对工序能耗和工序实物单耗计算方法给予说明,工艺能耗和综合能耗设置了等级指标。工序能耗不再设置等级指标。

附录A 《常用能源品种现行参考折标煤系数》(资料性附录)

考虑所有折标煤能耗指标建立在现行折标煤系数上,故设置此附录。附录A资料的折标煤系数如遇国家统计部门规定发生变化,能耗等级指标则应另行设定。

附录B 《耗能工质能源等价值》(资料性目录)

本资料来源于GB2589--90 《综合能耗计算通则》中的附录A。本附录B资料的能源等价值如有变动,以国家统计部门最新公布的数椐为准。

六、标准水平

本标准的制定填补了国内空白,规范了再生铅行业能源消耗管理,对节能降耗和资源的循环利用有着重要的意义。本标准达到国内先进水平,国外未查到相关标准。

七、标准属性

本标准属首次制定,为推荐性国家标准。

《再生铅单位产品能源消耗限额》标准编制小组

2009年6月

世界粉末冶金的技术现状

世界粉末冶金工业概况

2003年全球粉末货运总量约为88万吨,其中美国占51%,欧洲18%,日本13%,其它国家和地区18%。铁粉占整个粉末总量的90%以上。从2001年起,世界铁粉市场持续增长,4年时间增加了近20%。

汽车行业仍然是粉末冶金工业发展的最大动力和最大用户。一方面汽车的产量在不断增加,另一方面粉末冶金零件在单辆汽车上的用量也在不段增加。北美平均每辆汽车粉末冶金零件用量最高,为19.5公斤,欧洲平均为9公斤,日本平均为8公斤。中国由于汽车工业的高速发展,拥有巨大的粉末冶金零部件市场前景,已经成为众多国际粉末冶金企业关注的焦点。

粉末冶金铁基零件在汽车上主要应用于发动机、传送系统、ABS系统、点火装置等。汽车发展的两大趋势分别为降低能耗和环保;主要技术手段则是采用先进发动机系统和轻量化。

欧洲对汽车尾气过滤为粉末冶金多孔材料又提供了很大的市场。在目前的发动机工作条件下,粉末冶金金属多孔材料比陶瓷材料具有更好的性能优势和成本优势。

工具材料是粉末冶金工业另一类重要产品,其中特别重要的是硬质合金。目前制造业的发展朝着3A方向,即敏捷性(Agility)、适应性(Adaptivity)和可预测性(Anticipativity)。这要求加工工具本身更锋利、刚性更好、韧性更高;加工材料的范围扩大到吕合、镁合金、钛合金以及陶瓷等;尺寸精度要求更高;加工成本要求更低;环境影响要减到最小,干式加工比例更大。这些新要求加快了粉末冶金工具材料的发展。硬质合金的晶粒(<200nm=和超粗晶粒(>6um);涂层技术发展很快,CVD、PVD、PCVD技术日益完善,涂层种类也很多,从常用的 CVDTiCN/Al2O3 /TiN到CVD PCBN(聚晶立方BN)以及PVD TiAIN,Al2O3 ,cBN(立方BN)和SiMAlON等,满足加工场合的需要。

信息行业的发展也为粉末冶金工业提供了新的契机。日本电子行业用的粉末冶金产品已经达到了每年4.3美元,其中热沉材料占23%,发光与点极材料占30%。前者主要包括散热材料,如Si/SiC,Cu-Mo,Cu-W,Al-SiC,AlN以及Cu/金刚石等材料;后者则主要包括钨、钼材料。

粉末注射成型

粉末注射成形仍然是当前研究的热点之一。粉末注射成形的材料已经从早期的铁基、硬质合金、陶瓷等对杂质含量不敏感,性能要求不是非常苛刻的体系,发展到了镍基高温合金、钛合金和铌材料。材料应用领域也从结构材料向功能材料发展、如热沉材料、磁性材料和形状记忆合金。材料结构也从单一均匀结构向复合结构发展。金属工注射成形技术可实现多种不同成分的粉末同时成形,因而能够得到具有三明治形式的复合结构。例如将316L不锈纲和17-4PH合金复合,能够实现力学性能的连续可调。粉末注射成形的一个重要发展方向与与微系统技术密切相关。在与微系统技术密切相关。在与微系统相关的领域中,如电子信息、微化学、医疗器械等,器件不断小型化,功能更加复合化。而粉末注射成形技术提供了实现的可能。微注射成形技术是对传统注射成形技术的改进。它是针对零件尺寸结构小到1um所开发的成形技术,基本工艺与传统注射成形一致,但原料粉末粒度更小。采用微注射成形技术已经开发出了表面微结构精度10um的微流体装置,尺寸为350um~900um的不锈钢零件;实现了不同材料成分、复合结构的共烧结或共连接,获得了磁性/非磁性、导体/非导体微型复合零件。

粉末制备技术

粉末雾化一直是高性能粉末的制备技术。热气流雾化技术能够延长金属液滴在液相状态的时间,使粉末可以经过二次破碎(雾化),因而大大提高了雾化的效率,所得到的粉末粒度更为细小。ASL公司的研究结果表明,若将气体温度提高到330℃。制备相同粒度粉末所需的气体消耗量减少30%,其经济分析和工程化问题研究说明该技术是完全可行的。粉末雾化方面的技术有很大的改进。例如,采用一种新型自由裸体式气体雾化,能够得到更细的工具钢粉末,颗粒中碳化物的分布更均匀、缺陷更少。美国赫格拉斯公司将先进的炼钢技术用于粉末生产中,融合了电弧炼炉(EAF)技术、氩氧脱碳技术(ADO)、高性能雾化技术和氢退火技术,大大改善了粉末质量、粉末压坯密度和强度得到了提高。在活性粉末雾化方面,为了减少熔炼过程熔体与坩埚的反应,德国开发了电极感应熔炼气雾化(EIGA)技术,可制备高活性的钛、锆以及TiAl金属间化合物粉末。机械合金化仍然是研究的热门,但大多数是实验室工作。值得一提的是德国Zoz公司才用自己开发的高能球磨设备研磨电弧熔炼炉的炉渣,然后经过湿法冶金回收金属,这一技术既改善了环境,有开拓了巨大的市场。

粉末压制技术

传统粉末压制技术在很大程度上依赖于设备的改良和过程的优化。几家知名的压机生产商均推出了精度控制更准、自动化程度更高的新型号。

粉末烧结理论与技术

微波烧结作为一种新的快速烧结技术,已经完全适用于金属粉末材料,如粉末钢、硬质合金、有色金属等。微波烧结的工业化也许指日可待,因为不管是设备和技术的成熟度,还是批量化生产能力都没有太大问题;而主要障碍是生产商的接受程度和风险度。

放电等离子烧结(SPS)的研究也不少,材料体系也从陶瓷扩展到了金属材料,特别是一些超细晶材料,如铝合金、镁合金和自润滑铁基材料等。但是由于其单件生产的特点,该方法恐怕只能用来作一些基础研究。

喷射沉积在制备大型、细晶材料方面非常有优势。该技术最初主要生产铝合金和铝硅合金。随着熔炼技术的提高,喷射沉积已可用来制备工具钢和高温合金。德国不来梅大学报导采用喷射沉积制备出了单件质量超过100公斤,内径40mm,外径500mm,宽100mm的高温合金环。

快速成形技术近年来引起了很多学者的关注。在粉末冶金领域应用最多的是直接金属激光烧结。目前该技术已用于钢铁粉末和钛合金粉末等。另一种金属快速成形方法是三维印刷。该方法非常方便用于各种不同成分合金按照不同结构需要进行三维微观堆积,目前尚处于概念阶段。但该技术已用来制备了一些由金属+粘结剂组成的结构,以及梯度功能材料。

金属粉末多孔材料

金属粉末多孔材料的应用非常广泛,如轻质结构材料、高温过滤装置、分离膜等。目前最大的市场可能是柴油发动机的烟尘过滤装置。德国的 Fraunhofer研究所开发了一种金属空心球制备技术,在聚合物基体上涂覆金属粉末料浆,然后通过脱涂聚合物基体和粘结剂,最后烧结成各种具有空心结构的金属球体。球体的直径可丛1mm至8mm。所制备的钢空心球的密度仅0.3g/cm3。

硬质合金

纳米晶和梯度结构是硬质合金的两个重点方向。纳米晶材料方面包括晶粒长大控制和纳米粉末制备。梯度结构合金方面包括工艺与结构的关系。将纳米晶和梯度结构结合起来可能是一个很好的方向,能够在更微观层次上实现性能的可调。硬质合金的硬度高,可加工性差,因此采用注射成形制备复杂形状中小型零件是发展趋势,但是其商用化仍然受技术成熟度的控制。硬质合金其他方面的工作包括天家稀土及合金元素、断裂韧性和可靠性表征等。

粉末轻金属合金

汽车轻量化为铝、镁、钛等轻金属材料提供了广阔的应用前景。粉末铝合金在汽车上可应用的部位非常多,但Al-Si合金由于高比强度、高比刚度、低热膨胀系数和耐磨性好,有可能率先在油泵齿轮方面大规模应用。从工业化角度来看,对粉末冶金铝合金制备过程的优化研究更为重要。铝合金的另一个研究热点是复合材料,包括传统的Al/SiC,Al/C,Al/BN,Al/Ti(C,N)以及新出现的纳米碳管增强铝合金。高强粉末铝合金与快速凝固技术密切相关。通过成分设计,在纯铝基体中加入金属间化合物行成组元,可以制备高强度、高韧性、高热稳定性兼顾的铝合金。该材料的室温强度大于600Mpa,延伸率超过10%,在400℃还有很好的热稳定,疲劳极限是锻造铝合金的2倍。

镁合金的密度更小,其应用前景可能更好,但目前仍处于研究状态。采用快速凝固方法也是制备高性能粉末镁合金的重要手段。目前该技术在安全性方面已经没有太大的问题,所制备出的材料性能也远远高于铸造合金。

钛合金在汽车上的应用主要是成本问题,而粉末钛合金的主要障碍在于高性能低成本钛粉。英国QinetiQ Ltd开发了一种店脱氧技术(EDO),可批量生产钛粉。该技术与传统的以海绵钛为原料的氢化脱氢过程完全不同。它是一种类似于熔盐电解的方法,以 TiO2为阴极,石墨为阳极,在电解过程中TiO2的阳极迁移,并消耗阳极的炭形成CO,在阴极得到钛粉。钛粉的氧含量在0.035%~0.4%之间。采用这一技术还可方便地制备各种钛合金粉末。由于对气氛和杂质的敏感性,粉末钛合金的烧结也是工艺难点,通常与要热等静压或后续热加工。通过添加共晶形成组元和稀土元素能够明显改善粉末钛合金的烧结致密度,其力学性能也能达到锻造钛合金水平。这一系列工作将大大推动钛合金在汽车机关键部件上的应用。

粉末零件后续处理技术

后续处理对粉末冶金零件的性能至关重要。烧结硬化将烧结和热处理融为一体,合金成分和冷却条件对材料性能的影响很大。Miba公司采用钻孔技术对零件可加工性进行了评价。神户钢铁公司在烧结钢中添加一种复杂钙氧化物,代替通常用的MnS,明显改善了零件的可加工性,而不损害其力学性能。此外随着应用的扩大,粉末铝及复合材料的切削、多孔材料的线切割也受到了关注。

表面硬化是提高粉末冶金齿轮的重要手段。虽然铁基零件的密度已可达到7.4g/cm3,但在齿根和接触面仍需进一步提高密度和硬度。采用径向轧制已成为了一种重要手段,目前,各大铁基零件厂家对高性能粉末冶金齿轮的生产和应用都有表现出极大的关注。

粉末冶金过程模拟和标准化

欧洲启动了两个计划(PM Modnet和PM Dienet),首先针对铁基零件生产过程的模拟,随后力图扩展到其他材料体系,目前已取得了许多成果。英国也启动了大型研究计划,包括7个研究组和23 个企业,主要研究各种材料压制工艺的过程控制。因此,粉末压制过程的模拟工作已成为研究热点,相对而言,基础理论的工作,如致密化方程和本构方程方面的工作较少,而采用有限元方法和其它数值模拟方法的多。当然,压制过程模拟还包括摩擦、脱模、充模以及压坯性能模拟。

粉末冶金过程动态观察和产品质量控制与日常生产密切相关。采用X射线CT方法,能够很方便地动态观察粉末烧结过程的三维密度、孔隙度、颗粒尺寸分布和烧结颈的长大情况。采用高温IET还能测定材料的刚度和内耗,与其他手段相结合,能够方便地描述显微组织和力学性能的动态演化。采用动态热成像技术可以很快发现注射坯中的裂纹。目前在生产线上应用最多的是声学手段,各大粉末冶金公司都运用了这种无损探伤技术及时发现有缺陷产品或预测产品性能,这包括德国GKN、日本Nissan Motor、西班牙AMES等。但是,这种定量分析是一个系统工作,包括多变量统计、图象分析、物理和化学理论以及数值模拟等,只有多学科的工作者一起努力才能实现精确表征。

粉末冶金方法对某些特殊功能材料的制备非常有优势,如采用机械合金化能够制备纳米结构的MgB2超导材料和CuNb磁体。粉末功能材料的最大市场是磁性材料。在NbFeB材料方面,采用雾化粉提高密度和性能是最重要方向。该种粉末适用于注射成形,因而对中小型异型磁性材料零件的制备非常有意义。软磁复合材料(SMC)是将具有复合结构的铁粉固结起来的,在电动马达上的应用市场非常大。因而这方面的研究也很多,包括市场与应用分析、结构设计与优化、生产与工艺控制、疲劳性能等。

以上就是关于粉末冶金有哪些国标或企业标准?全部的内容,如果了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

 
举报收藏 0打赏 0评论 0
 
更多>同类百科头条
推荐图文
推荐百科头条
最新发布
点击排行
推荐产品
网站首页  |  公司简介  |  意见建议  |  法律申明  |  隐私政策  |  广告投放  |  如何免费信息发布?  |  如何开通福步贸易网VIP?  |  VIP会员能享受到什么服务?  |  怎样让客户第一时间找到您的商铺?  |  如何推荐产品到自己商铺的首页?  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  粤ICP备15082249号-2