除尘风机叶轮磨损怎么办啊,有修理厂家说要用耐磨焊丝修复,效果好吗?能维持多久???

   2023-04-22 18:47:44 网络790
核心提示:贴陶瓷贴片啊,实用。为了解决我厂排风机叶轮的强烈磨损问题,我厂在大量调研的基础上,大胆采用陶瓷-金属复合工艺,成功地将耐磨工程陶瓷应用在风机叶轮的防磨上,使风机叶轮的使用寿命提高五倍以上,为我厂风机叶轮的耐磨防磨以及安全生产又提供了一种有效

除尘风机叶轮磨损怎么办啊,有修理厂家说要用耐磨焊丝修复,效果好吗?能维持多久???

贴陶瓷贴片啊,实用。

为了解决我厂排风机叶轮的强烈磨损问题,我厂在大量调研的基础上,大胆采用陶瓷-金属复合工艺,成功地将耐磨工程陶瓷应用在风机叶轮的防磨上,使风机叶轮的使用寿命提高五倍以上,为我厂风机叶轮的耐磨防磨以及安全生产又提供了一种有效可靠的方法。

一,引言

火电厂大量使用的各类风机有引风机、排粉机、给风机和送风机等。其中引风机作为电厂的主要辅机之一,因为磨损而严重影响其出力并带来频繁的更新维修,已成为火力发电厂锅炉安全运行的隐患之一。以我厂为例,由于锅炉采用水膜除尘器且燃用煤种灰份较高,而且水膜除尘器效率较低,烟气中含灰量偏大,且燃用煤种灰份波动较大时,水膜除尘器除尘效率不稳定,造成引风机叶片磨损加剧。尤其是机翼形叶片,磨漏后进灰引起动不平衡,风机振动而被迫停机处理,机组降出力,对发电厂的经济效益以及社会效率造成很大影响。多年以来,虽然使用过许多表面强化方法,包括表面堆焊耐磨材料、热喷涂、喷焊、表面涂覆各种高分子涂料、表面淬火或化学热处理等,效果均不十分理想。2003年我厂在大量调研的基础上,大胆采用北京钛盾科技有限责任公司的陶瓷-金属复合制作技术,将耐磨工程陶瓷用于风机叶轮的耐磨防磨,并取得了初步成功。其后,经过进一步的工艺改进,先后在我厂的四台Y4-73NO.22F风机叶轮上进行应用,最长使用时间己达到三年以上,使用寿命提高三倍以上,最长运行时间到达三年以上,为我厂机组安全高效运行提供了可靠的保证,取得良好的经济效益。

二,叶轮运行工况

我厂锅炉除尘器为文丘里水膜除尘器,设计煤种含灰量22.81%。91年机组投产以来,一直燃用灰份较低的煤(灰份为12%),除尘效果一直较好,引风机磨损问题没有显现。96年以后,由于煤炭市场的制约,我厂开始燃用灰份较高的劣质煤,含灰份达48%。以后除尘器效率低,过负荷。引风机磨损加剧的问题逐渐突出。我厂引风机型号为Y4—73N022F,出力为28.33万立方/小时,叶片为后弯机翼型。98年引风机开始频繁振动,叶片鱼头部位磨损,磨漏进灰现象严重,严重制约我厂的安全经济运行。检修人员平均每周一次对叶片的焊补,找动平衡,造成比较被动的生产局面。为此,厂领导痛下决心一定要扭转这种局面,采取一切可能的措施,解决这个问题。

解决这个问题,有两个思路,一是彻底解决除尘效率低的问题,二是增强引风机叶轮防磨性能,而前一种可能性不大。因为煤种无法改变,且将水膜除尘器改为电除尘需几千万的资金,不现实,所以只能在第二种方法上下工夫。

三,引风机叶片的磨损分析及对策

引风机叶轮主要将锅炉燃烧废气通过烟道、烟囱等系统排放到大气中。在目前大修机组中由于使用了静电除尘装置,除尘效率可以达到99.9%以上,烟气中所含的硬质颗粒非常低,因此对引风机叶轮的磨损也特别轻微,在一些电厂使用可以达到几个大修期以上。然而对于使用水膜除尘器的锅炉,由于除尘效率较低,如果再燃用高灰份电煤,将导致叶轮强烈磨损,特别是对于机翼型叶轮,如果在叶片入口端,如果磨损导致叶片进灰,将导致叶轮失去动静平衡而产生强烈震动,从而严重影响风机的安全运行。以我厂的风机叶轮为例,磨损主要发生在叶轮的入口端,同时在叶片的入口和出口端靠近后盘分别形成一个三角形的磨损区域。这些部位的钢板经常被磨穿或磨成较深的沟槽,尤其在焊缝处磨损更为严重。

为了解决我厂叶轮磨损严重的问题,多年来我们进行了大量的调研,对国内外为延长风机叶轮的使用寿命进行了大量深入细致的研究和探讨,归纳起来主要有以下几种:

表面堆焊:采用耐磨电焊条、耐磨粉块在风机叶片磨损部位堆焊耐磨合金;

表面涂覆:在叶片表面磨损部位涂覆或粘接高分子耐磨材料;

热喷涂(焊):采用等离子喷涂方法或氧乙炔火焰,在叶片磨损表面喷涂陶瓷或碳化钨或者喷焊镍基+碳化钨合金;

表面粘贴或焊接陶瓷:将耐磨工程陶瓷利用高强度耐高温胶粘剂或特殊焊接工艺复合在风机叶片表面上。

2002年,我厂生产技术人员到各电厂和有关科研单位进行实地考察,认为热喷涂耐磨技术由于受到喷涂材料和喷涂工艺的限制,耐磨效果并不明显,而且由于大量输入热量,有可能导致叶轮变形,而且目前采用较少;表面堆焊技术大量使用,也是我公司的主要维修手段,但因为耐磨焊条质量和工艺的差别,导致耐磨性能和效果均不是十分理想;而表面镶嵌陶瓷,增加的厚度较高,增加了叶轮的重量,有可能造成引风机过负荷运行。

经过对采用粘贴陶瓷的牡丹江热电厂、呼和浩特热电厂、哈尔滨热电厂等的考察,认为北京钛盾科技公司的陶瓷粘贴技术比较成功,牡丹江热电厂与1999年6月对叶轮进行的防磨处理,至今已运行4万多小时,运行中未发现问题。定期检查时,偶尔发现有少量瓷片脱落,现场自己就可以贴补,瓷片厚度仅为2毫米,对叶轮的重量影响不大,可以现场施工。维护简单,效益可观。因此我厂决定采用陶瓷粘贴技术,对引风机叶轮进行耐磨处理。

风力发电机组常见故障

风力发电机的受风叶轮又细又长是因为叶片是风力发电机中最基础和最关键的部件,其良好的设计、可靠的质量和优越的性能是保证机组正常稳定运行的决定因素。恶劣的环境和长期不停地运转,对叶片的要求有:比重轻且具有最佳的疲劳强度和机械性能,能经受暴风等极端恶劣条件和随机负荷的考验叶片的弹性、旋转时的惯性及其振动频率特性曲线都正常,传递给整个发电系统的负荷稳定性好耐腐蚀、紫外线照射和雷击的性能好发电成本较低,维护费用最低。 再一就是降低重量为满足上述要求,提高机组的经济性,叶片的尺寸增大可以改善风力发电的经济性,降低成本。 接受风能和其装置的叶片的受风面积大小应该有很大关系,这种说法是不确切的。风能之所以转化为动能,是利用风与叶片作用后,。 为扩大受风范围和减少阻力,。

风机叶轮耐磨材料有哪些?

2.风力发电机组的故障

风电机组主要分为三类①双馈式变桨变速机型,是目前大部分企业采用的主流机型;②直驱永磁式变桨变速机型是近几年发展起来的,是未来风电的发展方向之一;③失速定桨定速机型是非主流机型,运行维护方便。

发电机是风电机组的核心部件,负责将旋转的机械能转化为电能,并为电气系统供电。随着风力机容量的增大,发电机的规模也在逐渐增加,使得对发电机的密封保护受到制约。发电机长期运行于变工况和电磁环境中,容易发生故障。常见的故障模式有发电机振动过大、发电机过热、轴承过热、转子/定子线圈短路、转子断条以及绝缘损坏等。据统计,在发电机的所有故障中,轴承的故障率为40%,定子的故障率为38%,转子的故障率为10%,其他故障占12%。

根据发电机的故障特点,采用的诊断方法主要是基于转子/定子电流信号、电压信号以及输出功率信号等状态检测手段。POPA等借助定子电流和转子电流信号的时域分析得到其幅值信息,再通过FFT得到电流信号的谐波分量,最后通过判断谐波分量的变化实现对发电机3种模拟故障的识别。WATSON等借助连续小波变换,对输出功率信号进行分析,识别出了发电机转子偏心故障和轴承故障。DJUROVIC等研究了稳态状况下,短时傅里叶变换方法在发电机定子开环故障中的应用。通过对比发现,虽然基于定子电流和瞬时功率的诊断方法均可识别出故障,但瞬时功率信号中包含了更多的故障信息。发电机的转子偏心现象是轴承过度磨损或其他故障隐患的表现。基于输出电流、电压、功率等信号的检测方法是识别转子偏心故障的有效手段。此外,MOHANTY等针对多级齿轮箱研究通过解调异步发电机的电流信号来诊断齿轮箱故障。

另外,BENNOLrNA等在变转速下建立了基于多项式的双馈式异步发电机线性与非线性数学模型,利用故障特征分析法检测出了转子偏心故障,但是此方法也仅能判断发电机出现故障类型,而不能准确找出故障源。YANG针对同步发电机为消除变转速的影响,提出了基于转矩和主轴转速的判断准则。模拟定子绕组线圈的短路,对发电机定子绕组电流/功率信号,先用离散小波去除噪声,再使用连续小波提取特征频率,有效地识别出了故障。

3.风力发电机组叶片故障

风力发电机组安装在野外比较恶劣的环境,经常处于无人值守的状态,对其运行状态的监测尤其重要。由于环境因素,机体各部件故障率较高,叶片作为风力发电机组的主要部件之一,对其故障监测十分必要,一旦出现故障,要是不及时处理,叶片就会很快的断裂。轻则造成停机,重则烧坏机组,影响正常供电,造成不可挽回的损失.

风机叶片故障类型可分为裂纹、凹痕和破损等,叶片的振动形式主要包括摆振、挥舞振动、扭转振动和复合振动,叶片的故障信息通常依靠现场监测的震动信号进行反应。在风力发电机组故障中,突变信号和非平稳信号往往会伴随故障存在。理论上讲,当叶片出现裂纹时,振动信号中会伴随有较强的高频冲击波,并且这些离散的故障信号是可能存在任意频段内的。

故障诊断常用方法有时域分析方法和频域分析方法,时域分析方法主要研究不同时刻信号之间的关系,对于某些有明显特征的故障信号,可做出定性分析。频域分析方法通过研究波形的谐波分量来识别多种频率成分。这两种方法都具有单一性,而小波分解方法具有局部化分析的功能,在时域和频域都能快速定位。小波分解在低频部分,可以采用宽的时间窗,频率分辨力则大大增强在高频部分则采用宽的时间窗,频率分辨力则会减弱。小波分解方法的这种特性非常适合非平稳信号的故障诊断。

4.轴承故障检测

风电机组主要零部件的可靠性研究表明,在风电机组的故障中电气和控制系统故障率最高,传动系统如齿轮箱、主轴承等故障率相对较低。但进一步的研究表明电气和控制系统的故障容易排除,停机时间短,并且也不需要吊车等辅助工具。从机组故障引发的停机时间、维护费用和是否容易造成的继发故障等角度分析,与电气和控制系统相比,机械传动系统的状态监测与预警维护更为重要。

轴承是旋转机械的关键部件,也是风电机组机械传动系统的核心部件,机械传动系统的非轴承如齿轮箱、桨叶等故障,亦多是由轴承故障引起或可在轴承的运行状态中得到反映。因此对轴承的运行状态进行实时监测,对整个机械传动系统的故障诊断和运行维护具有重要的意义。

风力发电机用轴承大致可以分为四类:变桨轴承、偏航轴承、传动系统轴承(主轴和变速箱轴承)和发电机轴承。偏航轴承安装在塔架与座舱的连接部,变桨轴承安装在每个叶片的根部与轮毂连接部位(除部分小功率兆瓦级以下的风力发电机为不可调桨叶,无变桨轴承外,每台风力发电机设备用一套偏航轴承和三套变桨轴承),主轴连接轮毂和齿轮箱,都是低速重载轴承,其中偏航和变桨轴承还是不完全旋转轴承。齿轮箱为增速箱,将叶轮的低速变为输入到发电机的高转速,二者的轴承与通常的发电机组除了在使用寿命和可靠性方面要求较高,并无其他不同。

目前的实际应用的风电轴承运行状态监测与故障识别的方法主要有基于数据采集与监视控制系统(SCADA,Supervisory Control And Data Acquisition)的方法,基于振动分析、润滑油检测的方法,基于声音、红外图像的方法以及多种方法相结合等方法。

4.1 基于SCADA的方法

对于运行状态监测,风电机组与通常的发电机组相比有自己的特点:通常的火力或水利发电机机组的单机功率比风电机组大的多,机组数目少,因此状态监测点少,而一个风电场通常几十台甚至上百台风电机组,因此需要的传感器数目和采集与通讯的数据量比通常的发电机组要大的多,增加了风电机组的成本和复杂性,也限制了监测系统的应用普及。如果能利用机组已有的SCADA数据,不装配额外的传感器获取机组轴承的运行状态,是最经济的方法。

研究表明发电机的机械故障可以由感应电机的终端发电机的输出反应出来,通过对感应电机的电压、电流和功率的稳定功率谱分析,对发电机的轴承、转子的断条、气隙偏向等故障进行故障监测。对于传动轴承故障诊断,类似的研究还比较少,用对电机电流解调的方法监测多级齿轮箱的故障,用定子电机电流识别齿轮箱滚动轴承的故障,由于电流的非平稳特点,引入了小波包变换的方法。在缺少振动传感器的情况下,由SCADA参数反应的传动系统轴承的运行状态不够具体。由多所大学、咨询机构和风电机组制造商合作的欧盟项目ReliaWind’在主轴承、齿轮箱和发电机轴承处安装振动传感器,通过将每十分钟的振动平均数据和SCADA数据参数相结合判断风电机组的运行状态。

4.2基于振动的方法

基于振动的方法在旋转机械和其他发电机组的故障诊断中已广泛应用,且取得了很好的效果。风电机组的发电机和齿轮箱高速轴承可以应用现有的基于振动的故障诊断技术,只是由于风电机组的负载是非平稳的变量,常用的时域和频域FFT分析方法的性能会受影响,在信号处理的方法上需要改进。而对于主轴承和齿轮箱低速轴承,由于轴承的转速低(每分钟10—30转),计算出的故障频率低,而高通滤波器会将3Hz以下的频率过滤掉,再加上受到环境噪声的影响,使得频谱分析效果很差甚至无法进行;而在冲击故障的瞬态性问题中,由于每次故障冲击的间隔较长,使用冲击法很难准确地检测到故障信号;同时由故障点产生的冲击响应的频率较低,不能激励起较高的频率成份。以上原因限制了振动监测主轴承运行状态的效果,但可从其运行情况反映叶片的运行状态,比如识别其是否平衡,从而判断其是否遭受冰冻等事故。

4.3基于润滑油液的方法

资料显示轴承的故障多于润滑不良有关,主要原因有 1)由于大气温度过低,润滑剂凝固,造成润滑剂无法到达需润滑部位而造成磨损;2)润滑剂散热不好,经常过热,造成润滑剂提前失效而损坏机械啮合表面;3)滤芯堵塞、油位传感器污染,润滑剂“中毒”而失效引起的故障有粘附磨损、腐蚀磨损、表面疲劳磨损、微动磨损和气蚀。这些磨损出现之后,轻则金属微粒会污染润滑剂,影响功率传递,产生噪音,造成齿面严重磨损或断裂,轴承内外圈或滚珠损坏,严重的使机组无法转动而彻底停机。目前的油液监测系统主要是振动齿轮箱的润滑油液,对于润滑的部件尚没有在线监测的方法。振动监测室风电轴承监测的趋势,但由于风电负载和风力的不稳定影响了传统的时域和频域FFT分析方法的效果,亟需引入新的非平稳信号的处理方法。

5. 风力系统的变频器的故障的分析

变频器的故障种类很多,主要有以下几类:和预先估计的结果差得很远、变频器不正确的动作行为、过电流、过电压以及电压不够等等。风力系统的变频器过电压情形指的是中间的直流回路超过电压,这会使中间直流回路滤波电容器的寿命大大减短。之所以会产生这种故障,是由于电源侧的冲击过电压。风力系统过电流故障是因为变频器负载有突然地变化,并且负载的不均匀分布,输出的还有短路这些种种缘由引起,加上逆变器过载的性能、功能极其差,因此逆变器过载故障诊断可谓是相当重要。另外,整流回路故障会因为输进的电源缺少而致使电压不够的故障发生。还有,低压穿过电网的时候变频器可能会产生故障,这也是一大研究的领域。

夜间组装风机叶轮有何风险?

耐磨陶瓷风机叶轮是指在风机叶轮的出口、叶片与后盘连接部位粘贴AL2O3瓷片,以提高耐磨性能。在传统的风机制造技术基础上,采用粘贴耐磨陶瓷衬片技术,在风机设备的主要工作表面形成一个具有优异耐磨性能的表层,可使风机叶轮的耐磨使用寿命提高三倍以上,风机效率提高10-30%左右。

耐磨陶瓷风机叶轮适用于火电厂引同、排粉机、热力厂、焦化厂、水泥厂、钢厂高炉风机、烧结风机、循环风机及其它输送硬质颗粒及腐蚀介质的工况。

性能特点:1.高硬度耐磨、提高使用寿命:由于风机叶轮工作表面耐磨陶瓷片硬度HRA80-88(92%-95%瓷),其耐颗粒冲刷磨损性能是喷涂喷焊以及合金粉块状焊接等常规处理方式的5倍以上,比基体16Mn钢材高100倍以上。

2.运行安全可靠效率高:根据不同陶瓷施工工艺,耐温最高可达450℃。而且耐磨陶瓷衬片韧性很好,可以适应高温及振动工况,在90-160℃的工况下运行可达7年以上,极少有因陶瓷脱落而导致风机非计划停运的事故,也不用考虑磨损问题,特别是大幅降低风机叶轮的重量,从而大大提高了的风机的运行效率,降低了维修检修时间,提高了经济效益。维修简单方便:施工简单,可对运行过程中出现的异常陶瓷脱落,异常局部磨损,进行快速及时地修补,同时不会对叶轮输入热量,防止叶轮变形,保证叶轮及附件及时投入运行。

使用寿命:耐磨陶瓷风机叶轮使用寿命与粉尘颗粒的大小、浓度、速度和冲刷角有关,颗粒越小,浓度越低,冲刷速度越低以及冲刷角度越小,耐磨风机叶轮的使用寿命就越长。

风力发电发电量的占比不断提升。但随着陆上风电安装规模的快速发展,现存风电资源越来越紧张,且机位点有效的土地和权属问题日益剧增,山地等地形的风机叶轮安装成为本领域技术人员需要解决的技术问题。目前常规的吊装方法需要在山头开挖出一个40m*50m的吊装平台,需要平台平整、无沟壑,在平台上选定一个合适的位置,通过钻孔灌注桩,预埋钢筋混凝土和锚栓的基座,然后在平台上进行风机叶片和轮毂的安装,配置一台550t以上的主吊和一个130t以上辅吊配合完成整个风机的安装,安装完成后需要对该混凝土预埋桩进行处理并恢复平台地貌。现有的叶片和轮毂组装方式存在施工工程量大、施工难度高,且混凝土预埋桩存在不能重复利用等不足的问题。

因此,如何解决吊装场地面积不足,风机叶轮吊装施工困难的问题成为本领域

技术实现要素:

本发明的目的是提供一种风机叶轮组装装置,提高了风机叶轮组装的便利性,解决吊装面积不足的问题,缩短了施工工程量,降低了施工成本。本发明的另一目的是提供一种应用上述风机叶轮组装装置的风机叶轮组装方法。

为实现上述目的,本发明提供一种风机叶轮组装装置,包括圆筒状的底座和连接所述底座的支架;所述底座设有用以固定风机叶轮的轮毂的螺孔,所述支架包括两条呈人字形设置的支腿,所述底座设于两条所述支腿的交汇处且垂直两条所述支腿所在的平面。

可选地,两条所述支腿呈120°夹角设置。

可选地,所述底座的底端设有第一垫板,所述支腿远离所述底座的一端设有第二垫板;所述第一垫板,和/或,所述第二垫板设有地脚螺栓孔。

可选地,所述支腿为型钢伸缩支架。

可选地,两条所述支腿铰接。

本发明还提供一种风机叶轮组装方法,应用上述风机叶轮组装装置,包括:

固定所述风机叶轮组装装置于地面;

将风机叶轮的轮毂安装于所述底座;

沿其中一个所述支腿的延伸方向吊装第一叶片;

沿另外一个所述支腿的延伸方向吊装第二叶片;

吊装第三叶片完成所述风机叶轮的组装。

可选地,所述固定所述风机叶轮组装装置于地面具体为:

确定所述风机叶轮的组装位置;

根据所述组装位置及所述风机叶轮的叶片的长度调整所述支腿的长度,并根据所述组装位置及所述支腿的长度确定所述第一垫板和所述第二垫板的固定位置;

将所述第一垫板和所述第二垫板分别对准其所述固定位置,并通过地脚螺栓孔固定。

可选地,所述沿其中一个所述支腿的延伸方向吊装第一叶片的步骤包括:

将所述轮毂的任意两个安装孔分别对准两个所述支腿的延伸方向并将所述轮毂固定;

吊起全部所述叶片并将全部所述叶片与所述安装孔一一对应摆放;

采用第一吊车吊起所述第一叶片的根部,采用第二吊车吊起所述第一叶片的溜尾处;

移动所述第一吊车和所述第二吊车,将所述第一叶片水平吊起并沿其中一个所述支腿的延伸方向固定于所述安装孔。

可选地,所述吊装第三叶片完成所述风机叶轮的组装的步骤之后还包括:

以上就是关于除尘风机叶轮磨损怎么办啊,有修理厂家说要用耐磨焊丝修复,效果好吗?能维持多久???全部的内容,如果了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

 
举报收藏 0打赏 0评论 0
 
更多>同类百科头条
推荐图文
推荐百科头条
最新发布
点击排行
推荐产品
网站首页  |  公司简介  |  意见建议  |  法律申明  |  隐私政策  |  广告投放  |  如何免费信息发布?  |  如何开通福步贸易网VIP?  |  VIP会员能享受到什么服务?  |  怎样让客户第一时间找到您的商铺?  |  如何推荐产品到自己商铺的首页?  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  粤ICP备15082249号-2